Araştırma Makalesi
BibTex RIS Kaynak Göster

Kablosuz İletişimde Fraktal Geometriler: Sierpinski Halı Fraktal Antenlerine Odaklanma

Yıl 2025, Cilt: 30 Sayı: 1, 206 - 214, 29.04.2025
https://doi.org/10.53433/yyufbed.1582558

Öz

Bu makale, Wi-Fi gibi kablosuz uygulamalar için kritik bir bant olan yaklaşık 2,4 GHz'lik bir rezonans frekansına ulaşmayı amaçlayan bir Sierpinski halı fraktal anteninin tasarımını ve performansını araştırmaktadır. Çalışma, fraktal geometrilerin anten minyatürizasyonunu, bant genişliğini ve kazancını artırmadaki avantajlarını vurgulayarak onları modern iletişim sistemleri için uygun hale getiriyor. COMSOL Multiphysics kullanılarak antenin elektromanyetik özellikleri simüle edilmiş ve yansıma katsayıları, ışıma örüntüleri ve empedans eşleşmesine odaklanılarak deneysel olarak doğrulanmıştır. Simülasyon, 2,432 GHz'de yaklaşık -30 dB'lik bir S11 yansıma katsayısı ile güçlü empedans eşleşmesi ortaya çıkardı ve bu da minimum güç kaybına işaret ediyor. Deneysel sonuçlar, RFID, Wi-Fi ve bazı tıbbi cihazlar gibi uygulamalar için uygun olan tasarımın dar bant çalışmasını ve neredeyse küresel radyasyon modelini doğrulayan simülasyonlarla yakından uyumludur.

Kaynakça

  • Bayram M.C., Güzelbakan S., & Karpat E. (2021). Yapay sinir ağları ile çeyrek daire yarıklı mikroşerit yama antenin rezonans frekansının belirlenmesi. European Journal of Science and Technology, 32, 716-720. https://doi.org/10.31590/ejosat.1039855
  • Comandini, G., Ting, V., Azarpeyvand, M., & Scarpa, F. (2023). Experimental and numerical studies on the hilbert fractal architecture as an acoustic metamaterial. Institute of Noise Control Engineering, 265(5), 2358-2361. https://doi.org/10.3397/IN_2022_0336
  • Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., & Raffo, A. (2016). Fractal reflectarray antennas: state of art and new opportunities. International Journal of Antennas and Propagation, 2016(1), 7165143. https://doi.org/10.1155/2016/7165143
  • Das, S., Sen, R., & Sharma, S. (2024). Design and numerical analysis of a fractal tree shaped graphene based metasurface solar absorber. Plasmonics, 20, 1889-1899. https://doi.org/10.1007/s11468-024-02418-x
  • Gawade, R. P., & Dahotre, S. G. (2021). Microstrip patch antenna simulation using comsol multiphysics. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2108.03373
  • Herbko, M., Lopato, P., Psuj, G., & Rajagopal, P. (2022). Application of selected fractal geometry resonators in microstrip strain sensors. IEEE Sensors Journal, 22(13), 12656-12663. https://doi.org/10.1109/JSEN.2022.3177932
  • Jagtap, R. V., Ugale, A. D., & Alegaonkar, P. S. (2018). Ferro-nano-carbon split ring resonators a bianisotropic metamaterial in X-band: Constitutive parameters analysis. Materials Chemistry and Physics, 205, 366-375. https://doi.org/10.1016/j.matchemphys.2017.11.027
  • Kim, Y., Lee, S. G., Kim, J., & Lee, J. H. (2022). Miniaturized square fractal ring patch unit cell for active reflective metasurface in C‐and X‐bands. Microwave and Optical Technology Letters, 64(12), 2179-2188. https://doi.org/10.1002/mop.33423
  • Palanisamy, S., Thangaraju, B., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies, 14(19), 6204. https://doi.org/10.3390/en14196204
  • Ramesh, R., Sen, A., Sam, R. V., Abraham, N., & Beena S. (2023). Simulation study on the design and analysis of minkowski anti ısland fractal for micro-supercapacitors. 2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 36-39. https://doi.org/10.1109/WIECON-ECE60392.2023.10456411
  • Tzanov, V., Llobet, J., Torres, F., Perez-Murano, F., & Barniol, N. (2020). Multi-frequency resonance behaviour of a Si fractal NEMS resonator. Nanomaterials, 10(4), 811. https://doi.org/10.3390/nano10040811
  • Ugale, A. D., Jagtap, R. V., Pawar, D., Datar, S., Kale, S. N., & Alegaonkar, P. S. (2016). Nano-carbon: Preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Advances, 6(99), 97266-97275. https://doi.org/10.1039/C6RA17422A
  • Urul, B. (2022). Designing high gain reflect array antenna with fractal structures. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 408-415. https://doi.org/10.46519/ij3dptdi.1147283
  • Uttley, Z., Santos Batista, J., Pirzada, B., & El-Shenawee, M. (2023). Experimental and computational analysis of broadband thz photoconductive antennas. International Journal of Antennas and Propagation, 2023(1), 6682627. https://doi.org/10.1155/2023/6682627

Fractal Geometries in Wireless Communication: A Focus on Sierpinski Carpet Fractal Antennas

Yıl 2025, Cilt: 30 Sayı: 1, 206 - 214, 29.04.2025
https://doi.org/10.53433/yyufbed.1582558

Öz

This article explores the design and performance of a Sierpinski carpet fractal antenna aimed at achieving a resonant frequency of approximately 2.4 GHz, a critical band for wireless applications like Wi-Fi. The study emphasizes the advantages of fractal geometries in enhancing antenna miniaturization, bandwidth, and gain, making them suitable for modern communication systems. Using COMSOL Multiphysics, the antenna's electromagnetic characteristics were simulated and experimentally validated, focusing on reflection coefficients, radiation patterns, and impedance matching. The simulation revealed strong impedance matching at 2.432 GHz with an S11 reflection coefficient of about -30 dB, indicating minimal power loss. Experimental results closely align with simulations, confirming the design's narrowband operation and nearly spherical radiation pattern, which are suitable for applications such as RFID, Wi-Fi, and certain medical devices.

Kaynakça

  • Bayram M.C., Güzelbakan S., & Karpat E. (2021). Yapay sinir ağları ile çeyrek daire yarıklı mikroşerit yama antenin rezonans frekansının belirlenmesi. European Journal of Science and Technology, 32, 716-720. https://doi.org/10.31590/ejosat.1039855
  • Comandini, G., Ting, V., Azarpeyvand, M., & Scarpa, F. (2023). Experimental and numerical studies on the hilbert fractal architecture as an acoustic metamaterial. Institute of Noise Control Engineering, 265(5), 2358-2361. https://doi.org/10.3397/IN_2022_0336
  • Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., & Raffo, A. (2016). Fractal reflectarray antennas: state of art and new opportunities. International Journal of Antennas and Propagation, 2016(1), 7165143. https://doi.org/10.1155/2016/7165143
  • Das, S., Sen, R., & Sharma, S. (2024). Design and numerical analysis of a fractal tree shaped graphene based metasurface solar absorber. Plasmonics, 20, 1889-1899. https://doi.org/10.1007/s11468-024-02418-x
  • Gawade, R. P., & Dahotre, S. G. (2021). Microstrip patch antenna simulation using comsol multiphysics. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2108.03373
  • Herbko, M., Lopato, P., Psuj, G., & Rajagopal, P. (2022). Application of selected fractal geometry resonators in microstrip strain sensors. IEEE Sensors Journal, 22(13), 12656-12663. https://doi.org/10.1109/JSEN.2022.3177932
  • Jagtap, R. V., Ugale, A. D., & Alegaonkar, P. S. (2018). Ferro-nano-carbon split ring resonators a bianisotropic metamaterial in X-band: Constitutive parameters analysis. Materials Chemistry and Physics, 205, 366-375. https://doi.org/10.1016/j.matchemphys.2017.11.027
  • Kim, Y., Lee, S. G., Kim, J., & Lee, J. H. (2022). Miniaturized square fractal ring patch unit cell for active reflective metasurface in C‐and X‐bands. Microwave and Optical Technology Letters, 64(12), 2179-2188. https://doi.org/10.1002/mop.33423
  • Palanisamy, S., Thangaraju, B., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies, 14(19), 6204. https://doi.org/10.3390/en14196204
  • Ramesh, R., Sen, A., Sam, R. V., Abraham, N., & Beena S. (2023). Simulation study on the design and analysis of minkowski anti ısland fractal for micro-supercapacitors. 2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 36-39. https://doi.org/10.1109/WIECON-ECE60392.2023.10456411
  • Tzanov, V., Llobet, J., Torres, F., Perez-Murano, F., & Barniol, N. (2020). Multi-frequency resonance behaviour of a Si fractal NEMS resonator. Nanomaterials, 10(4), 811. https://doi.org/10.3390/nano10040811
  • Ugale, A. D., Jagtap, R. V., Pawar, D., Datar, S., Kale, S. N., & Alegaonkar, P. S. (2016). Nano-carbon: Preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Advances, 6(99), 97266-97275. https://doi.org/10.1039/C6RA17422A
  • Urul, B. (2022). Designing high gain reflect array antenna with fractal structures. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 408-415. https://doi.org/10.46519/ij3dptdi.1147283
  • Uttley, Z., Santos Batista, J., Pirzada, B., & El-Shenawee, M. (2023). Experimental and computational analysis of broadband thz photoconductive antennas. International Journal of Antennas and Propagation, 2023(1), 6682627. https://doi.org/10.1155/2023/6682627
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Antenler ve Yayılma
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Zafer Ozer 0000-0001-7118-938X

Yayımlanma Tarihi 29 Nisan 2025
Gönderilme Tarihi 11 Kasım 2024
Kabul Tarihi 21 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Ozer, Z. (2025). Fractal Geometries in Wireless Communication: A Focus on Sierpinski Carpet Fractal Antennas. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 206-214. https://doi.org/10.53433/yyufbed.1582558
OSZAR »