Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürdürülebilir, biyo-esaslı sakız reçinesi akrilik monomerinin (GRA) değişen oranlarda termoplastik akrilatlarla birleştirilmesi yoluyla boya performansının arttırılması

Yıl 2025, Cilt: 15 Sayı: 1, 211 - 217, 22.04.2025

Öz

Bu çalışmada, biyo esaslı sakız reçinesinin akrilasyonu yoluyla biyo esaslı bir akrilik monomer (GRA) sentezlendi. Bu monomer daha sonra termoplastik 1K (tek bileşenli) akrilat polimerlerinin sentezinde kullanıldı. Bu polimerler vernik ve boya formülasyonlarında uygulanabilir; daha fazla parlaklık, daha iyi yapışma, daha iyi görsel çekicilik ve sağlam darbe direnci gibi üstün kaplama özellikleri sunar. Sentezlenen GRA, termoplastik akrilat bileşimlerinde %2.5, %5.0 ve %10.0 oranlarında biyo esaslı monomer olarak eklendi. Sentezlenen monomer ve bunun sonucunda elde edilen polimerler, jel geçirgenlik kromatografisi (GPC) ve Yansıma-Fourier Dönüşüm Kızılötesi (ATR-FTIR) spektroskopisi kullanılarak incelenmiştir. Polimerlerin termal özellikleri, diferansiyel taramalı kalorimetre (DSC) kullanılarak analiz edildi. Yapışma, parlaklık, sertlik, kuruma süreleri ve darbe direnci dahil olmak üzere kaplama özellikleri değerlendirildi ve incelendi. Sonuçlar, polimerlerdeki sakız reçinesi monomerlerinin miktarının arttırılmasının, cam geçiş sıcaklıklarını 30.18 °C’den 24.12 °C’ye düşürdüğünü, bunun da darbe direncini artırdığını ve metal yüzeylere yapışmayı iyileştirdiğini göstermektedir. Metal yüzeylerde yapışma neredeyse iki katına çıkar. Artan miktarlarda biyo esaslı sakız reçinesi ile formüle edilen boyalar, standart formülasyonlarla karşılaştırıldığında olağanüstü yüksek parlaklık değerleri, hızlı kuruma süreleri ve üstün estetik sergiledi. Halihazırda mevcut boyalarda kullanılan bağlayıcılarla karşılaştırıldığında, sakız reçinesi akrilat monomerleri içeren polimer, geliştirilmiş kaplama kapasitesine sahip boyalar ve vernikler üretmek için kullanılabilir. Bu arada boya formülasyonları herhangi bir plastikleştirici ilave edilmeden hazırlanabilmektedir.

Kaynakça

  • Caillol, S. 2023. The future of cardanol as small giant for biobased aromatic polymers and additives. European Polymer Journal, 193:112096. Doi: 10.1016/j.eurpolymj.2023.112096
  • Callow, JA., Callow, ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature communications, 2(1):244. Doi: 10.1038/ncomms1251
  • De La Rosa-Ramírez, H., Aldas, M., Ferri, JM., López-Martínez, J., Samper, MD. 2020. Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 137(44):49346. Doi: 10.1002/app.49346
  • De la Rosa-Ramírez, H., Dominici, F., Ferri, JM., Luzi, F., Puglia, D., Torre, L., et al. 2023. Pentaerythritol and glycerol esters derived from gum rosin as bio-based additives for the ımprovement of processability and thermal stability of polylactic acid. Journal of Polymers and the Environment, 31(12):5446-5461. Doi: 10.1007/s10924-023-02949-0
  • Divya, S., Daniel, RR. 2021. A study on the characterization and utilization of the banana peel, shells of egg and prawn for the production of bioplastics. Journal of Advanced Applied Scientific Research, 3(5):26-31. Doi: 10.46947/joaasr352021120
  • Dizman, C., Ozman, E. 2020. Preparation of rapid (chain-stopped) alkyds by incorporation of gum rosin and investigation of coating properties. Turkish Journal of Chemistry, 44(4):932-940. Doi: 10.3906/KIM-2001-56
  • Do, HS., Park, JH., Kim, HJ. 2009. Synthesis and characteristics of photoactive-hydrogenated rosin epoxy methacrylate for pressure sensitive adhesives. Journal of Applied Polymer Science, 111(3):1172-1176. Doi: 10.1002/app.28954 Faccini, M., Bautista, L., Soldi, L., Escobar, AM., Altavilla, M., Calvet, M., et al. (2021). Environmentally friendly anticorrosive polymeric coatings. Applied Sciences, 11(8):3446. Doi: 10.3390/app11083446
  • Felton, LA., McGinity, JW. 1997. Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts. International journal of pharmaceutics, 154(2):167-178. Doi: 10.1016/S0378-5173(97)00133-6 Galus, S., Kibar, EAA., Gniewosz, M., Kraśniewska, K. 2020. Novel materials in the preparation of edible films and coatings-A review. Coatings. 10(7):674. Doi: 10.3390/coatings10070674
  • Gowthaman, NSK., Lim, HN., Sreeraj, TR., Amalraj, A., Gopi, S. 2021. Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. Biopolymers and their industrial applications, Elsevier, pp. 351-372.
  • Jaswal, S., Thakur, T., Gaur, B., Singha, AS. 2022. High-performance gum rosin-modified hyperbranched vinyl ester resin derived from multifunctional pentaerythritol. Polymer Bulletin, 79:477–501. Doi: 10.1007/s00289-020-03511-x
  • Jia, P., Xia, H., Tang, K., Zhou, Y. 2018. Plasticizers derived from biomass resources: A short review. Polymers, 10(12):1303. Doi: 10.3390/polym10121303
  • Kumar, B., Adil, S., Kim, J. 2023. Adhesion improvement of bio-based epoxy in environmentally friendly and high-performance natural fiber-reinforced composites. Macromolecular Materials and Engineering, 308(8):2300003.. Doi: 10.1002/mame.202300003
  • Lastovickova, DN., Toulan, FR., Mitchell, JR., VanOosten, D., Clay, AM., Stanzione, JF., et al. 2021. Resin, cure, and polymer properties of photopolymerizable resins containing bio-derived isosorbide. Journal of Applied Polymer Science, 138(25):app50574. Doi: 10.1002/app.50574
  • Mahmud, N., Islam, J., Tahergorabi, R. 2021. Marine biopolymers: Applications in food packaging. Processes, 9(12):2245. Doi: 10.3390/pr9122245
  • Mangal, M., Rao, CV., Banerjee, T. 2023. Bioplastic: an eco-friendly alternative to non-biodegradable plastic. Polymer International, 72(11):984-996. Doi: 10.1002/pi.6555
  • Mirabedini, SM., Zareanshahraki, F., Mannari, V. 2020. Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings, 139:105454. Doi: 10.1016/j.porgcoat.2019.105454
  • Natsir, M., Nurdin, M., Ansharullah, A., Muzakkar, MZ., Trimutia, E., Irwan, I., et al. 2021. The technique for separation and purification of gondorukem (gum rosin) from pine gum (pinus merkusii) with a simple distillation method. In Journal of Physics: Conference Series, 1899(1):012038. Doi: 10.1088/1742-6596/1899/1/012038 Parihar, S., Gaur, B. 2022. Thermo-reversible self-healing polymeric coatings derived from gum rosin. Progress in Organic Coatings, 168, 106889. Doi: 10.1016/j.porgcoat.2022.106889
  • Petrunin, MA. 2022. Advances in anti-corrosion polymeric and paint coatings on metals: Preparation, adhesion, characterization and application. Metals, 12(7):1216. Doi: 10.3390/met12071216
  • Rehan, ZA., Usman, A. 2023. Polymeric Paints and Coatings. In: Shaker, K., Hafeez, A. (eds) Advanced Functional Polymers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0787-8_4
  • Shorey, R., Mekonnen, TH. 2022. Sustainable paper coating with enhanced barrier properties based on esterified lignin and PBAT blend. International Journal of Biological Macromolecules, 209:472-484.. Doi: 10.1016/j.ijbiomac.2022.04.037
  • Shukurov, MM., Nurdinov, MA., Hudoynazarov, NB., Ismoilov, RI. 2021. Roads, road lines and thermoplastic products used in their drawing. ACADEMICIA: An International Multidisciplinary Research Journal, 11(4):258-263. Doi: 10.5958/2249-7137.2021.01049.1
  • Singh, SS., Thakur, A., Sandilya, S., Kumar, A. 2022. Recent advances in bioplastics: Synthesis and emerging perspective. Iran. J. Chem. Chem. Eng., 41(8): 2704-2727. Doi: 210.30492/IJCCE.2021.141813.4459
  • Soucek, MD., Khattab, T., Wu, J. 2012. Review of autoxidation and driers. Progress in Organic Coatings, 73(4):435-454. Doi: 10.1016/j.porgcoat.2011.08.021
  • Taheri, M., Jahanfar, M., Ogino, K. 2019. Synthesis of acrylic resins for high-solids traffic marking paint by solution polymerization. Designed Monomers and Polymers, 22(1):213-225. Doi: 10.1080/15685551.2019.1699349
  • Vevere, L., Fridrihsone, A., Kirpluks, M., Cabulis, U. 2020. A review of wood biomass-based fatty acids and rosin acids use in polymeric materials. Polymers, 12(11):2706. Doi: 10.3390/polym12112706
  • Vieira, MGA., Da Silva, MA., Dos Santos, LO., Beppu, MM. 2011. Natural-based plasticizers and biopolymer films: A review. European polymer journal, 47(3):254-263. Doi: 10.1016/j.eurpolymj.2010.12.011
  • Wilbon, PA., Chu, F., Tang, C. 2013. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular rapid communications, 34(1):-37. Doi: 10.1002/marc.201200513
  • Yebra, DM., Kiil, S., Dam-Johansen, K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in organic coatings, 50(2):75-104.. Doi: 10.1016/j.porgcoat.2003.06.001
  • Yerro, O., Radojevic, V., Radovic, I., Petrovic, M., Uskokovic, PS., Stojanovic, DB., Aleksic, R. 2016. Thermoplastic acrylic resin with self-healing properties. Polym. Eng. Sci., 56(3). Doi: 10.1002/pen.24244
  • Yu, J., Xu, C., Song, X., Lu, C., Wang, C., Wang, J., Chu, F. 2021. Synthesis and properties of rosin grafted polymers via “grafting from” ATRP: The role of rosin-based initiator. Ind. Crops. Prod., 168. Doi: 10.1016/j.indcrop.2021.113610
  • Zhang, Y., Wang, H., Eberhardt, TL., Gu, Q., Pan, H. 2021. Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. Eur. Polym. J., 150. Doi: 10.1016/j.eurpolymj.2021.110389

Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA)

Yıl 2025, Cilt: 15 Sayı: 1, 211 - 217, 22.04.2025

Öz

In this study, a bio-based acrylic monomer (GRA) was synthesized through the acrylation of bio-based gum rosin. This monomer was subsequently employed in the synthesis of thermoplastic 1K (one component) acrylate polymers. These polymers are applicable in varnish and paint formulations, offering superior coating features, including increased gloss, enhanced adhesion, improved visual appeal, and robust impact resistance. The synthesized GRA served as a bio-based monomer in thermoplastic acrylate compositions at ratios of 2.5%, 5.0%, and 10.0%. The synthesized monomer and its resultant polymers were studied using gel permeation chromatography (GPC) and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). The thermal characteristics of the polymers were analyzed using a differential scanning calorimeter (DSC). The coating properties, including adhesion, gloss, hardness, drying times, and impact resistance, were evaluated and studied. The results indicate that increasing the quantity of gum rosin monomers in the polymers reduced the glass transition temperatures from 30.18 °C to 24.12 °C, which enhanced impact resistance and improved adhesion to metal surfaces. The adhesion is nearly doubled on metallic surfaces. Paints formulated with increased amounts of bio-based gum rosin exhibit exceptionally high gloss values, rapid drying times, and superior aesthetics compared to standard formulations. In comparison to the binders employed in currently available paints, the polymer containing gum rosin acrylate monomers can be utilized to manufacture paints and varnishes with enhanced coating capabilities. By the way, the paint formulations can be prepared without any addition of plasticizer.

Destekleyen Kurum

İZEL KİMYA

Kaynakça

  • Caillol, S. 2023. The future of cardanol as small giant for biobased aromatic polymers and additives. European Polymer Journal, 193:112096. Doi: 10.1016/j.eurpolymj.2023.112096
  • Callow, JA., Callow, ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature communications, 2(1):244. Doi: 10.1038/ncomms1251
  • De La Rosa-Ramírez, H., Aldas, M., Ferri, JM., López-Martínez, J., Samper, MD. 2020. Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 137(44):49346. Doi: 10.1002/app.49346
  • De la Rosa-Ramírez, H., Dominici, F., Ferri, JM., Luzi, F., Puglia, D., Torre, L., et al. 2023. Pentaerythritol and glycerol esters derived from gum rosin as bio-based additives for the ımprovement of processability and thermal stability of polylactic acid. Journal of Polymers and the Environment, 31(12):5446-5461. Doi: 10.1007/s10924-023-02949-0
  • Divya, S., Daniel, RR. 2021. A study on the characterization and utilization of the banana peel, shells of egg and prawn for the production of bioplastics. Journal of Advanced Applied Scientific Research, 3(5):26-31. Doi: 10.46947/joaasr352021120
  • Dizman, C., Ozman, E. 2020. Preparation of rapid (chain-stopped) alkyds by incorporation of gum rosin and investigation of coating properties. Turkish Journal of Chemistry, 44(4):932-940. Doi: 10.3906/KIM-2001-56
  • Do, HS., Park, JH., Kim, HJ. 2009. Synthesis and characteristics of photoactive-hydrogenated rosin epoxy methacrylate for pressure sensitive adhesives. Journal of Applied Polymer Science, 111(3):1172-1176. Doi: 10.1002/app.28954 Faccini, M., Bautista, L., Soldi, L., Escobar, AM., Altavilla, M., Calvet, M., et al. (2021). Environmentally friendly anticorrosive polymeric coatings. Applied Sciences, 11(8):3446. Doi: 10.3390/app11083446
  • Felton, LA., McGinity, JW. 1997. Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts. International journal of pharmaceutics, 154(2):167-178. Doi: 10.1016/S0378-5173(97)00133-6 Galus, S., Kibar, EAA., Gniewosz, M., Kraśniewska, K. 2020. Novel materials in the preparation of edible films and coatings-A review. Coatings. 10(7):674. Doi: 10.3390/coatings10070674
  • Gowthaman, NSK., Lim, HN., Sreeraj, TR., Amalraj, A., Gopi, S. 2021. Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. Biopolymers and their industrial applications, Elsevier, pp. 351-372.
  • Jaswal, S., Thakur, T., Gaur, B., Singha, AS. 2022. High-performance gum rosin-modified hyperbranched vinyl ester resin derived from multifunctional pentaerythritol. Polymer Bulletin, 79:477–501. Doi: 10.1007/s00289-020-03511-x
  • Jia, P., Xia, H., Tang, K., Zhou, Y. 2018. Plasticizers derived from biomass resources: A short review. Polymers, 10(12):1303. Doi: 10.3390/polym10121303
  • Kumar, B., Adil, S., Kim, J. 2023. Adhesion improvement of bio-based epoxy in environmentally friendly and high-performance natural fiber-reinforced composites. Macromolecular Materials and Engineering, 308(8):2300003.. Doi: 10.1002/mame.202300003
  • Lastovickova, DN., Toulan, FR., Mitchell, JR., VanOosten, D., Clay, AM., Stanzione, JF., et al. 2021. Resin, cure, and polymer properties of photopolymerizable resins containing bio-derived isosorbide. Journal of Applied Polymer Science, 138(25):app50574. Doi: 10.1002/app.50574
  • Mahmud, N., Islam, J., Tahergorabi, R. 2021. Marine biopolymers: Applications in food packaging. Processes, 9(12):2245. Doi: 10.3390/pr9122245
  • Mangal, M., Rao, CV., Banerjee, T. 2023. Bioplastic: an eco-friendly alternative to non-biodegradable plastic. Polymer International, 72(11):984-996. Doi: 10.1002/pi.6555
  • Mirabedini, SM., Zareanshahraki, F., Mannari, V. 2020. Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings, 139:105454. Doi: 10.1016/j.porgcoat.2019.105454
  • Natsir, M., Nurdin, M., Ansharullah, A., Muzakkar, MZ., Trimutia, E., Irwan, I., et al. 2021. The technique for separation and purification of gondorukem (gum rosin) from pine gum (pinus merkusii) with a simple distillation method. In Journal of Physics: Conference Series, 1899(1):012038. Doi: 10.1088/1742-6596/1899/1/012038 Parihar, S., Gaur, B. 2022. Thermo-reversible self-healing polymeric coatings derived from gum rosin. Progress in Organic Coatings, 168, 106889. Doi: 10.1016/j.porgcoat.2022.106889
  • Petrunin, MA. 2022. Advances in anti-corrosion polymeric and paint coatings on metals: Preparation, adhesion, characterization and application. Metals, 12(7):1216. Doi: 10.3390/met12071216
  • Rehan, ZA., Usman, A. 2023. Polymeric Paints and Coatings. In: Shaker, K., Hafeez, A. (eds) Advanced Functional Polymers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0787-8_4
  • Shorey, R., Mekonnen, TH. 2022. Sustainable paper coating with enhanced barrier properties based on esterified lignin and PBAT blend. International Journal of Biological Macromolecules, 209:472-484.. Doi: 10.1016/j.ijbiomac.2022.04.037
  • Shukurov, MM., Nurdinov, MA., Hudoynazarov, NB., Ismoilov, RI. 2021. Roads, road lines and thermoplastic products used in their drawing. ACADEMICIA: An International Multidisciplinary Research Journal, 11(4):258-263. Doi: 10.5958/2249-7137.2021.01049.1
  • Singh, SS., Thakur, A., Sandilya, S., Kumar, A. 2022. Recent advances in bioplastics: Synthesis and emerging perspective. Iran. J. Chem. Chem. Eng., 41(8): 2704-2727. Doi: 210.30492/IJCCE.2021.141813.4459
  • Soucek, MD., Khattab, T., Wu, J. 2012. Review of autoxidation and driers. Progress in Organic Coatings, 73(4):435-454. Doi: 10.1016/j.porgcoat.2011.08.021
  • Taheri, M., Jahanfar, M., Ogino, K. 2019. Synthesis of acrylic resins for high-solids traffic marking paint by solution polymerization. Designed Monomers and Polymers, 22(1):213-225. Doi: 10.1080/15685551.2019.1699349
  • Vevere, L., Fridrihsone, A., Kirpluks, M., Cabulis, U. 2020. A review of wood biomass-based fatty acids and rosin acids use in polymeric materials. Polymers, 12(11):2706. Doi: 10.3390/polym12112706
  • Vieira, MGA., Da Silva, MA., Dos Santos, LO., Beppu, MM. 2011. Natural-based plasticizers and biopolymer films: A review. European polymer journal, 47(3):254-263. Doi: 10.1016/j.eurpolymj.2010.12.011
  • Wilbon, PA., Chu, F., Tang, C. 2013. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular rapid communications, 34(1):-37. Doi: 10.1002/marc.201200513
  • Yebra, DM., Kiil, S., Dam-Johansen, K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in organic coatings, 50(2):75-104.. Doi: 10.1016/j.porgcoat.2003.06.001
  • Yerro, O., Radojevic, V., Radovic, I., Petrovic, M., Uskokovic, PS., Stojanovic, DB., Aleksic, R. 2016. Thermoplastic acrylic resin with self-healing properties. Polym. Eng. Sci., 56(3). Doi: 10.1002/pen.24244
  • Yu, J., Xu, C., Song, X., Lu, C., Wang, C., Wang, J., Chu, F. 2021. Synthesis and properties of rosin grafted polymers via “grafting from” ATRP: The role of rosin-based initiator. Ind. Crops. Prod., 168. Doi: 10.1016/j.indcrop.2021.113610
  • Zhang, Y., Wang, H., Eberhardt, TL., Gu, Q., Pan, H. 2021. Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. Eur. Polym. J., 150. Doi: 10.1016/j.eurpolymj.2021.110389
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Kaplama Teknolojisi
Bölüm Research Article
Yazarlar

Cemil Dızman 0000-0002-1780-3008

Elif Cerrahoğlu Kaçakgil 0000-0002-6548-0944

Aleyna Turanlı 0000-0001-5087-6797

Yayımlanma Tarihi 22 Nisan 2025
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 13 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Dızman, C., Cerrahoğlu Kaçakgil, E., & Turanlı, A. (2025). Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA). Karaelmas Fen Ve Mühendislik Dergisi, 15(1), 211-217. https://doi.org/10.7212/karaelmasfen.1613080
AMA Dızman C, Cerrahoğlu Kaçakgil E, Turanlı A. Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA). Karaelmas Fen ve Mühendislik Dergisi. Nisan 2025;15(1):211-217. doi:10.7212/karaelmasfen.1613080
Chicago Dızman, Cemil, Elif Cerrahoğlu Kaçakgil, ve Aleyna Turanlı. “Enhancing Paint Performance through the Incorporation of Thermoplastic Acrylates With Varying Proportions of a Sustainable, Bio-Based Gum Rosin Acrylic Monomer (GRA)”. Karaelmas Fen Ve Mühendislik Dergisi 15, sy. 1 (Nisan 2025): 211-17. https://doi.org/10.7212/karaelmasfen.1613080.
EndNote Dızman C, Cerrahoğlu Kaçakgil E, Turanlı A (01 Nisan 2025) Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA). Karaelmas Fen ve Mühendislik Dergisi 15 1 211–217.
IEEE C. Dızman, E. Cerrahoğlu Kaçakgil, ve A. Turanlı, “Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA)”, Karaelmas Fen ve Mühendislik Dergisi, c. 15, sy. 1, ss. 211–217, 2025, doi: 10.7212/karaelmasfen.1613080.
ISNAD Dızman, Cemil vd. “Enhancing Paint Performance through the Incorporation of Thermoplastic Acrylates With Varying Proportions of a Sustainable, Bio-Based Gum Rosin Acrylic Monomer (GRA)”. Karaelmas Fen ve Mühendislik Dergisi 15/1 (Nisan 2025), 211-217. https://doi.org/10.7212/karaelmasfen.1613080.
JAMA Dızman C, Cerrahoğlu Kaçakgil E, Turanlı A. Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA). Karaelmas Fen ve Mühendislik Dergisi. 2025;15:211–217.
MLA Dızman, Cemil vd. “Enhancing Paint Performance through the Incorporation of Thermoplastic Acrylates With Varying Proportions of a Sustainable, Bio-Based Gum Rosin Acrylic Monomer (GRA)”. Karaelmas Fen Ve Mühendislik Dergisi, c. 15, sy. 1, 2025, ss. 211-7, doi:10.7212/karaelmasfen.1613080.
Vancouver Dızman C, Cerrahoğlu Kaçakgil E, Turanlı A. Enhancing paint performance through the incorporation of thermoplastic acrylates with varying proportions of a sustainable, bio-based gum rosin acrylic monomer (GRA). Karaelmas Fen ve Mühendislik Dergisi. 2025;15(1):211-7.
OSZAR »