Research Article
BibTex RIS Cite

In silico analysis of IL7RA missense mutations in lung, breast and skin cancers

Year 2025, Volume: 26 Issue: 1, 9 - 17, 15.04.2025
https://doi.org/10.23902/trkjnat.1545678

Abstract

Interleukin 7 (IL7)-Interleukin 7 Receptor Alpha (IL7RA) signaling is well investigated in hematological cancers, but in solid cancers, its role needs to be investigated further. In a recent study, IL7R was identified as a key gene in leptomeningeal carcinoma. Unfortunately, there is limited patient data on leptomeningeal carcinoma from breast, lung and skin cancers. In this study, IL7RA missense mutations that could have pathologic importance in lung, breast and skin cancers were analyzed in silico. Using Genomic Data Commons (GDC) data portal, lung, breast and melanoma data from 3250 patients were filtered to list IL7RA missense mutations. Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen2), Universal Mutation Database Predictor (UMD-Predictor) and Single Nucleotide Polymorphisms & Gene Ontology (E-SNP&GO) servers were employed to reveal pathogenic variants. Conservation Surface Mapping (ConSurf )was used to analyze conservation scores. Domains were investigated by InterPro tool. Molecular docking of IL7-IL7RA was performed by ClusPro, Mutational Binding free energy change predictor 2 (Mutabind2) and Protein-Ligand Interaction Profiler (PLIP) servers. Stability of the mutations were analyzed by Impact-Mutant 2.0 (I-Mutant2), Mutation Protein Stability Prediction (MUpro) and Impact of Non-synonymous mutations on Protein Stability-Multi Dimension (INPS-MD). Structural changes were determined using Dynamic Mutation predictor 2 (DynaMut2) and Have (y)Our Protein Explained (HOPE) servers. Out of 99 missense mutations identified, 6 (T56P, C57Y, K204I, S207F, G215V and W217C) were defined as pathogenic. All these mutations were primarily found in lung cancer and located in the extracellular domain of IL7RA. Although none were in the interaction interface of IL7, all were located at or next to conserved motifs. This proximity likely destabilizes IL7RA and drastically changes its bonding patterns. The IL7RA missense mutations may have a significant role in lung cancer, as they presumably change the protein’s function.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

Supporting Institution

The author declared that this study has received no financial support.

References

  • 1. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S. & Sunyaev, S.R. 2010. A method and server for predicting damaging missense mutations. Nature Methods, 7(4): 248-249. https://doi.org/10.1038/nmeth0410-248
  • 2. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T. & Ben-Tal, N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1): W344-50. https://doi.org/10.1093/nar/gkw408
  • 3. Barata, J.T., Durum, S.K. & Seddon, B. 2019. Flip the coin: IL-7 and IL-7R in health and disease. Nature Immunology, 20(12): 1584-1593. https://doi.org/10.1038/s41590-019-0479-x
  • 4. Barros, P.O., Berthoud, T.K., Aloufi, N. & Angel, J.B. 2021. Soluble IL-7Rα/sCD127 in Health, Disease, and Its Potential Role as a Therapeutic Agent. Immunotargets and Therapy, 10: 47-62. https://doi.org/10.2147/ITT.S264149
  • 5. Benevenuta, S., Birolo, G., Sanavia, T., Capriotti, E. & Fariselli, P. 2023. Challenges in predicting stabilizing variations: An exploration. Frontiers in Molecular Biosciences, 9: 1075570. https://doi.org/10.3389/fmolb.2022.1075570
  • 6. Campos, L.W., Pissinato, L.G. & Yunes, J.A. 2019. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel). 11(12): 1952. https://doi.org/10.3390/cancers11121952
  • 7. Capriotti, E., Fariselli, P. & Casadio, R. 2005. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue): W306-310. https://doi.org/10.1093/nar/gki375
  • 8. Caushi, J.X., Zhang, J., Ji, Z., Vaghasia, A., Zhang, B., Hsiue, E.H., Mog, B.J., Hou, W., Justesen, S., Blosser, R., Tam, A., Anagnostou, V., Cottrell, T.R., Guo, H., Chan, H.Y., Singh, D., Thapa S, Dykema, A.G., Burman, P., Choudhury, B., Aparicio, L., Cheung, L.S., Lanis, M., Belcaid ,Z., El Asmar, M., Illei, P.B., Wang, R., Meyers, J., Schuebel, K., Gupta, A., Skaist A., Wheelan, S., Naidoo, J., Marrone, K.A., Brock, M., Ha J., Bush, E.L., Park, B.J., Bott, M., Jones, D.R., Reuss, J.E., Velculescu, V.E., Chaft, J.E., Kinzler, K.W., Zhou, S., Vogelstein, B., Taube J.M., Hellmann, M.D., Brahmer, J.R., Merghoub, T., Forde, P.M., Yegnasubramanian, S., Ji, H., Pardoll, D.M. & Smith, K.N. 2021. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature, 596(7870): 126-132. https://doi.org/10.1038/s41586-021-03752-4
  • 9. Cheng, J., Randall, A. & Baldi, P. 2006. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4): 1125-32. https://doi.org/10.1002/prot.20810
  • 10. Congur, I., Koni, E., Onat, O.E. & Tokcaer Keskin, Z. 2023. Meta-analysis of commonly mutated genes in leptomeningeal carcinomatosis. PeerJ. 11: e15250. https://doi.org/10.7717/peerj.15250
  • 11. Cosenza, L., Gorgun, G., Urbano, A. & Foss, F. 2002. Interleukin-7 receptor expression and activation in nonhaematopoietic neoplastic cell lines. Cell Signal, 14(4): 317-25. https://doi.org/10.1016/S0898-6568(01)00245-5
  • 12. Desta, I.T., Porter, K.A., Xia, B., Kozakov, D. & Vajda, S. 2020. Performance and its limits in rigid body protein-protein docking. Structure, 28(9): 1071-1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • 13. Fariselli, P., Martelli, P.L., Savojardo, C. & Casadio, R. 2015. INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 31(17): 2816-2821. https://doi.org/10.1093/bioinformatics/btv291
  • 14. Ke, B., Wei, T., Huang, Y., Gong, Y., Wu, G., Liu, J., Chen, X. & Shi, L. 2019. Interleukin-7 resensitizes non-small-cell lung cancer to cisplatin via inhibition of ABCG2. Mediators of Inflammation. 2019: 7241418. https://doi.org/10.1155/2019/7241418
  • 15. Kim, M.S., Chung, N.G., Kim, M.S., Yoo, N.J. & Lee, S.H. 2013. Somatic mutation of IL7R exon 6 in acute leukemias and solid cancers. Human Pathology, 44(4): 551-555. https://doi.org/10.1016/j.humpath.2012.06.017
  • 16. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R. & Vajda, S. 2013. How good is automated protein docking? Proteins, 81(12): 2159-2166. https://doi.org/10.1002/prot.24403
  • 17. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. & Vajda, S. 2017. The ClusPro web server for protein-protein docking. Nature Protocols, 12(2): 255-278. https://doi.org/10.1038/nprot.2016.169
  • 18. Li, S.C., Goto, N.K., Williams, K.A. & Deber, C.M. 1996. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proceedings of the National Academy of Sciences U S A, 93(13): 6676-81. https://doi.org/10.1073/pnas.93.13.6676
  • 19. Lundström, W., Highfill, S., Walsh, S.T., Beq, S., Morse, E., Kockum, I., Alfredsson, L., Olsson, T, Hillert, J. & Mackall, C.L. 2013. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proceedings of the National Academy of Sciences U S A, 110(19): E1761-70. https://doi.org/10.1073/pnas.1222303110
  • 20. Manfredi, M., Savojardo, C., Martelli, P.L. & Casadio, R. 2022. E-SNPs&GO: embedding of protein sequence and function improves the annotation of human pathogenic variants. Bioinformatics, 38(23): 5168-5174. https://doi.org/10.1093/bioinformatics/btac678
  • 21. Mazzucchelli, R. & Durum, S.K. 2007. Interleukin-7 receptor expression: intelligent design. Nature Reviews Immunology, 7(2): 144-154. https://doi.org/10.1038/nri2023
  • 22. Mazzucchelli, R.I., Riva, A. & Durum, S.K. 2012. The human IL-7 receptor gene: deletions, polymorphisms and mutations. Seminars in Immunology, 24(3): 225-30. https://doi.org/10.1016/j.smim.2012.02.007
  • 23. McElroy, C.A., Dohm, J.A., Walsh, S.T. 2009. Structural and biophysical studies of the human IL-7/IL-7Ralpha complex. Structure, 17(1): 54-65. https://doi.org/10.1016/j.str.2008.10.019
  • 24. Mir, R.A., Shafi, S.M. & Zargar, S.M. 2023. Chapter 1 - Undestanding the OMICS techniques: an introduction to genomics and proteomics. pp 1-28. In: Mir, R.A., Shafi, S.M. & Zargar, S.M. (eds). Principles of Genomics and Proteomics. Elsevier, New York. 274 pp.
  • 25. Pancotti, C., Benevenuta, S., Birolo, G., Alberini, V., Repetto, V., Sanavia, T., Capriotti, E. & Fariselli, P. 2022. Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Briefings in Bioinformatics, 23(2): 555. https://doi.org/10.1093/bib/bbab555
  • 26. Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi M.L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D.H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D.A., Orengo, C.A., Pandurangan, A.P., Rivoire, C., Sigrist, C.J.A., Sillitoe, I., Thanki, N., Thomas, P.D., Tosatto, S.C.E., Wu, C.H. & Bateman, A. 2023. InterPro in 2022. Nucleic Acids Research, 51(D1): D418-D427. https://doi.org/10.1093/nar/gkac993.
  • 27. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. 1998. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nature Genetics, 20(4): 394-397. https://doi.org/10.1038/3877
  • 28. Rodrigues, C.H.M., Pires, D.E.V. & Ascher, D.B. 2021. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Science, 30(1): 60-69. https://doi.org/10.1002/pro.3942
  • 29. Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F. & Schroeder, M. 2015. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1): W443-W447. https://doi.org/10.1093/nar/gkv315
  • 30. Salgado, D., Desvignes, J.P., Rai, G., Blanchard, A., Miltgen, M., Pinard, A., Lévy, N., Collod-Béroud, G. & Béroud, C. 2016. UMD-Predictor: A high-throughput sequencing compliant system for pathogenicity prediction of any human cDNA Substitution. Human Mutation, 37(5): 439-46. https://doi.org/10.1002/humu.22965
  • 31. Senthil, R., Usha, S. & Saravanan, K.M. 2019. Importance of fluctuating amino acid residues in folding and binding of proteins. Avicenna Journal of Medical Biotechnology, 11(4): 339-343.
  • 32. Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G. & Ng, P.C. 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web Server issue): W452-7. https://doi.org/10.1093/nar/gks539
  • 33. Suybeng, V., Koeppel, F., Harlé, A. & Rouleau, E. 2020. Comparison of pathogenicity prediction tools on somatic variants. The Journal of Molecular Diagnostics, 22(12): 1383-1392. https://doi.org/10.1016/j.jmoldx.2020.08.007
  • 34. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R. & Kozakov, D. 2017. New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3): 435-444. https://doi.org/10.1002/prot.25219
  • 35. Valášek, L.S., Kučerová, M., Zeman, J. & Beznosková, P. 2023. Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line. RNA, 29(9): 1379-1387. https://doi.org/10.1261/rna.079688.123
  • 36. Venselaar, H., Te Beek, T.A., Kuipers, R.K., Hekkelman, M.L. & Vriend, G. 2010. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11: 548. https://doi.org/10.1186/1471-2105-11-548
  • 37. Vitiello, G.A.F., Losi Guembarovski, R., Amarante, M.K., Ceribelli, J.R., Carmelo, E.C.B. & Watanabe, M.A.E. 2018. Interleukin 7 receptor alpha Thr244Ile genetic polymorphism is associated with susceptibility and prognostic markers in breast cancer subgroups. Cytokine, 103: 121-126. https://doi.org/10.1016/j.cyto.2017.09.019
  • 38. Vranjkovic, A., Crawley, A.M., Gee, K., Kumar, A. & Angel, J.B. 2007. IL-7 decreases IL-7 receptor alpha (CD127) expression and induces the shedding of CD127 by human CD8+ T cells. International Immunology, 19(12): 1329-1339. https://doi.org/10.1093/intimm/dxm102
  • 39. Wang, C., Kong, L., Kim, S., Lee, S., Oh, S., Jo, S., Jang, I. & Kim, T.D. 2022. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy. International Journal of Molecular Sciences, 23(18): 10412. https://doi.org/10.3390/ijms231810412
  • 40. Wang, X., Chang, S., Wang, T., Wu, R., Huang, Z., Sun, J., Liu, J., Yu, Y., Mao, Y. 2022. IL7R is correlated with immune cell infiltration in the tumor microenvironment of lung adenocarcinoma. Frontiers in Pharmacology, 13: 857289. https://doi.org/10.3389/fphar.2022.857289
  • 41. Wang, Z., Wang, X., Gao, Y., Wang, Y., Xu, M., Han, Q. & Zhao, X. 2020. IL-7R gene variants are associated with breast cancer susceptibility in Chinese Han women. International Immunopharmacology, 86: 106756. https://doi.org/10.1016/j.intimp.2020.106756
  • 42. Winer, H., Rodrigues, G.O.L., Hixon, J.A., Aiello, F.B., Hsu, T.C., Wachter, B.T., Li, W. & Durum, S.K. 2022. IL-7: Comprehensive review. Cytokine, 160: 156049. https://doi.org/10.1016/j.cyto.2022.156049
  • 43. Yan, L., He, Y., Zhang, Y., Liu, Y., Xu, L., Han, C., Zhao, Y. & Li, H. 2023. A novel 268 kb deletion combined with a splicing variant in IL7R causes of severe combined immunodeficiency in a Chinese family: a case report. BMC Medical Genomics, 16(1): 323. https://doi.org/10.1186/s12920-023-01765-8
  • 44. Zhang, N., Chen, Y., Lu, H., Zhao, F., Alvarez, R.V., Goncearenco, A., Panchenko, A.R. & Li M. 2020. MutaBind2: Predicting the impacts of single and multiple mutations on protein-protein interactions. iScience, 23(3): 100939. https://doi.org/10.1016/j.isci.2020.100939
  • 45. Zu, L., He, J., Zhou, N., Tang, Q., Liang, M. & Xu, S. 2023. Identification of multiple organ metastasis-associated hub mRNA/miRNA signatures in non-small cell lung cancer. Cell Death and Disease, 14(12): 798. https://doi.org/10.1038/s41419-023-06286-x
Year 2025, Volume: 26 Issue: 1, 9 - 17, 15.04.2025
https://doi.org/10.23902/trkjnat.1545678

Abstract

İnterlökin 7 (IL7)-İnterlökin 7 Reseptör Alfa (IL7RA) sinyali hematolojik kanserlerde iyi araştırılmış, ancak, solid kanserlerdeki rolünün daha fazla araştırılması gerekmektedir. Son yapılan bir çalışmada, IL7R leptomeningeal karsinomda anahtar gen olarak tanımlanmıştır. Meme, akciğer ve deri kanserlerinden kaynaklanan leptomeningeal karsinomda, ne yazık ki sınırlı sayıda hasta verisi bulunmaktadır. Bu çalışmada, akciğer, meme ve deri kanserlerinde patolojik öneme sahip olabilecek IL7RA yanlış anlamlı mutasyonları bilgisayarlı olarak analiz edildi. GDC veri portalı kullanılarak, 3250 hastadan alınan akciğer, meme ve deri kanseri verileri filtrelenerek IL7RA yanlış anlamlı mutasyonları listelendi. Patojenik varyantları ortaya çıkarmak için Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen2), Universal Mutation Database Predictor (UMD-Predictor)ve Single Nucleotide Polymorphisms & Gene Ontology (E-SNP&GO) sunucuları kullanıldı. Korunma puanları analiz etmek için Conservation Surface Mapping (ConSurf) kullanıldı. Domain adları InterPro aracıyla araştırıldı. IL7-IL7RA'nın moleküler yerleştirilmesi ClusPro, Mutational Binding free energy change predictor 2 (Mutabind2) ve Protein-Ligand Interaction Profiler (PLIP) sunucuları tarafından gerçekleştirildi. Mutasyonların stabilitesi Impact-Mutant 2.0 (I-Mutant2), Mutation Protein Stability Prediction (MUpro) ve Impact of Non-synonymous mutations on Protein Stability-Multi Dimension (INPS-MD) ile analiz edildi. Yapısal değişiklikler Dynamic Mutation predictor 2 (DynaMut2) ve Have (y)Our Protein Explained (HOPE) sunucuları kullanılarak belirlendi. Tanımlanan 99 yanlış anlamlı mutasyondan 6'sı (T56P, C57Y, K204I, S207F, G215V ve W217C) patojenik olarak belirlendi. Tüm mutasyonların öncelikli olarak akciğer kanserinde bulunduğu ve IL7RA'nın ekstraselüler alanında yerleştiği tespit edildi. Her ne kadar hiçbiri IL7 etkileşiminin ara yüzünde olmasa da, hepsi korunmuş motiflerin yanında veya yakınında konumlanmışlardı. Bu yakınlık IL7RA'yı istikrarsızlaştırmakta ve bağlanma paternini büyük ölçüde değiştirmektedir. IL7RA yanlış anlamlı mutasyonları muhtemelen proteinin işlevini değiştirdiği için akciğer kanserinde önemli bir role sahip olabilir.

References

  • 1. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S. & Sunyaev, S.R. 2010. A method and server for predicting damaging missense mutations. Nature Methods, 7(4): 248-249. https://doi.org/10.1038/nmeth0410-248
  • 2. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T. & Ben-Tal, N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1): W344-50. https://doi.org/10.1093/nar/gkw408
  • 3. Barata, J.T., Durum, S.K. & Seddon, B. 2019. Flip the coin: IL-7 and IL-7R in health and disease. Nature Immunology, 20(12): 1584-1593. https://doi.org/10.1038/s41590-019-0479-x
  • 4. Barros, P.O., Berthoud, T.K., Aloufi, N. & Angel, J.B. 2021. Soluble IL-7Rα/sCD127 in Health, Disease, and Its Potential Role as a Therapeutic Agent. Immunotargets and Therapy, 10: 47-62. https://doi.org/10.2147/ITT.S264149
  • 5. Benevenuta, S., Birolo, G., Sanavia, T., Capriotti, E. & Fariselli, P. 2023. Challenges in predicting stabilizing variations: An exploration. Frontiers in Molecular Biosciences, 9: 1075570. https://doi.org/10.3389/fmolb.2022.1075570
  • 6. Campos, L.W., Pissinato, L.G. & Yunes, J.A. 2019. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel). 11(12): 1952. https://doi.org/10.3390/cancers11121952
  • 7. Capriotti, E., Fariselli, P. & Casadio, R. 2005. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue): W306-310. https://doi.org/10.1093/nar/gki375
  • 8. Caushi, J.X., Zhang, J., Ji, Z., Vaghasia, A., Zhang, B., Hsiue, E.H., Mog, B.J., Hou, W., Justesen, S., Blosser, R., Tam, A., Anagnostou, V., Cottrell, T.R., Guo, H., Chan, H.Y., Singh, D., Thapa S, Dykema, A.G., Burman, P., Choudhury, B., Aparicio, L., Cheung, L.S., Lanis, M., Belcaid ,Z., El Asmar, M., Illei, P.B., Wang, R., Meyers, J., Schuebel, K., Gupta, A., Skaist A., Wheelan, S., Naidoo, J., Marrone, K.A., Brock, M., Ha J., Bush, E.L., Park, B.J., Bott, M., Jones, D.R., Reuss, J.E., Velculescu, V.E., Chaft, J.E., Kinzler, K.W., Zhou, S., Vogelstein, B., Taube J.M., Hellmann, M.D., Brahmer, J.R., Merghoub, T., Forde, P.M., Yegnasubramanian, S., Ji, H., Pardoll, D.M. & Smith, K.N. 2021. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature, 596(7870): 126-132. https://doi.org/10.1038/s41586-021-03752-4
  • 9. Cheng, J., Randall, A. & Baldi, P. 2006. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4): 1125-32. https://doi.org/10.1002/prot.20810
  • 10. Congur, I., Koni, E., Onat, O.E. & Tokcaer Keskin, Z. 2023. Meta-analysis of commonly mutated genes in leptomeningeal carcinomatosis. PeerJ. 11: e15250. https://doi.org/10.7717/peerj.15250
  • 11. Cosenza, L., Gorgun, G., Urbano, A. & Foss, F. 2002. Interleukin-7 receptor expression and activation in nonhaematopoietic neoplastic cell lines. Cell Signal, 14(4): 317-25. https://doi.org/10.1016/S0898-6568(01)00245-5
  • 12. Desta, I.T., Porter, K.A., Xia, B., Kozakov, D. & Vajda, S. 2020. Performance and its limits in rigid body protein-protein docking. Structure, 28(9): 1071-1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • 13. Fariselli, P., Martelli, P.L., Savojardo, C. & Casadio, R. 2015. INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 31(17): 2816-2821. https://doi.org/10.1093/bioinformatics/btv291
  • 14. Ke, B., Wei, T., Huang, Y., Gong, Y., Wu, G., Liu, J., Chen, X. & Shi, L. 2019. Interleukin-7 resensitizes non-small-cell lung cancer to cisplatin via inhibition of ABCG2. Mediators of Inflammation. 2019: 7241418. https://doi.org/10.1155/2019/7241418
  • 15. Kim, M.S., Chung, N.G., Kim, M.S., Yoo, N.J. & Lee, S.H. 2013. Somatic mutation of IL7R exon 6 in acute leukemias and solid cancers. Human Pathology, 44(4): 551-555. https://doi.org/10.1016/j.humpath.2012.06.017
  • 16. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R. & Vajda, S. 2013. How good is automated protein docking? Proteins, 81(12): 2159-2166. https://doi.org/10.1002/prot.24403
  • 17. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. & Vajda, S. 2017. The ClusPro web server for protein-protein docking. Nature Protocols, 12(2): 255-278. https://doi.org/10.1038/nprot.2016.169
  • 18. Li, S.C., Goto, N.K., Williams, K.A. & Deber, C.M. 1996. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proceedings of the National Academy of Sciences U S A, 93(13): 6676-81. https://doi.org/10.1073/pnas.93.13.6676
  • 19. Lundström, W., Highfill, S., Walsh, S.T., Beq, S., Morse, E., Kockum, I., Alfredsson, L., Olsson, T, Hillert, J. & Mackall, C.L. 2013. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proceedings of the National Academy of Sciences U S A, 110(19): E1761-70. https://doi.org/10.1073/pnas.1222303110
  • 20. Manfredi, M., Savojardo, C., Martelli, P.L. & Casadio, R. 2022. E-SNPs&GO: embedding of protein sequence and function improves the annotation of human pathogenic variants. Bioinformatics, 38(23): 5168-5174. https://doi.org/10.1093/bioinformatics/btac678
  • 21. Mazzucchelli, R. & Durum, S.K. 2007. Interleukin-7 receptor expression: intelligent design. Nature Reviews Immunology, 7(2): 144-154. https://doi.org/10.1038/nri2023
  • 22. Mazzucchelli, R.I., Riva, A. & Durum, S.K. 2012. The human IL-7 receptor gene: deletions, polymorphisms and mutations. Seminars in Immunology, 24(3): 225-30. https://doi.org/10.1016/j.smim.2012.02.007
  • 23. McElroy, C.A., Dohm, J.A., Walsh, S.T. 2009. Structural and biophysical studies of the human IL-7/IL-7Ralpha complex. Structure, 17(1): 54-65. https://doi.org/10.1016/j.str.2008.10.019
  • 24. Mir, R.A., Shafi, S.M. & Zargar, S.M. 2023. Chapter 1 - Undestanding the OMICS techniques: an introduction to genomics and proteomics. pp 1-28. In: Mir, R.A., Shafi, S.M. & Zargar, S.M. (eds). Principles of Genomics and Proteomics. Elsevier, New York. 274 pp.
  • 25. Pancotti, C., Benevenuta, S., Birolo, G., Alberini, V., Repetto, V., Sanavia, T., Capriotti, E. & Fariselli, P. 2022. Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Briefings in Bioinformatics, 23(2): 555. https://doi.org/10.1093/bib/bbab555
  • 26. Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi M.L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D.H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D.A., Orengo, C.A., Pandurangan, A.P., Rivoire, C., Sigrist, C.J.A., Sillitoe, I., Thanki, N., Thomas, P.D., Tosatto, S.C.E., Wu, C.H. & Bateman, A. 2023. InterPro in 2022. Nucleic Acids Research, 51(D1): D418-D427. https://doi.org/10.1093/nar/gkac993.
  • 27. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. 1998. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nature Genetics, 20(4): 394-397. https://doi.org/10.1038/3877
  • 28. Rodrigues, C.H.M., Pires, D.E.V. & Ascher, D.B. 2021. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Science, 30(1): 60-69. https://doi.org/10.1002/pro.3942
  • 29. Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F. & Schroeder, M. 2015. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1): W443-W447. https://doi.org/10.1093/nar/gkv315
  • 30. Salgado, D., Desvignes, J.P., Rai, G., Blanchard, A., Miltgen, M., Pinard, A., Lévy, N., Collod-Béroud, G. & Béroud, C. 2016. UMD-Predictor: A high-throughput sequencing compliant system for pathogenicity prediction of any human cDNA Substitution. Human Mutation, 37(5): 439-46. https://doi.org/10.1002/humu.22965
  • 31. Senthil, R., Usha, S. & Saravanan, K.M. 2019. Importance of fluctuating amino acid residues in folding and binding of proteins. Avicenna Journal of Medical Biotechnology, 11(4): 339-343.
  • 32. Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G. & Ng, P.C. 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web Server issue): W452-7. https://doi.org/10.1093/nar/gks539
  • 33. Suybeng, V., Koeppel, F., Harlé, A. & Rouleau, E. 2020. Comparison of pathogenicity prediction tools on somatic variants. The Journal of Molecular Diagnostics, 22(12): 1383-1392. https://doi.org/10.1016/j.jmoldx.2020.08.007
  • 34. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R. & Kozakov, D. 2017. New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3): 435-444. https://doi.org/10.1002/prot.25219
  • 35. Valášek, L.S., Kučerová, M., Zeman, J. & Beznosková, P. 2023. Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line. RNA, 29(9): 1379-1387. https://doi.org/10.1261/rna.079688.123
  • 36. Venselaar, H., Te Beek, T.A., Kuipers, R.K., Hekkelman, M.L. & Vriend, G. 2010. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11: 548. https://doi.org/10.1186/1471-2105-11-548
  • 37. Vitiello, G.A.F., Losi Guembarovski, R., Amarante, M.K., Ceribelli, J.R., Carmelo, E.C.B. & Watanabe, M.A.E. 2018. Interleukin 7 receptor alpha Thr244Ile genetic polymorphism is associated with susceptibility and prognostic markers in breast cancer subgroups. Cytokine, 103: 121-126. https://doi.org/10.1016/j.cyto.2017.09.019
  • 38. Vranjkovic, A., Crawley, A.M., Gee, K., Kumar, A. & Angel, J.B. 2007. IL-7 decreases IL-7 receptor alpha (CD127) expression and induces the shedding of CD127 by human CD8+ T cells. International Immunology, 19(12): 1329-1339. https://doi.org/10.1093/intimm/dxm102
  • 39. Wang, C., Kong, L., Kim, S., Lee, S., Oh, S., Jo, S., Jang, I. & Kim, T.D. 2022. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy. International Journal of Molecular Sciences, 23(18): 10412. https://doi.org/10.3390/ijms231810412
  • 40. Wang, X., Chang, S., Wang, T., Wu, R., Huang, Z., Sun, J., Liu, J., Yu, Y., Mao, Y. 2022. IL7R is correlated with immune cell infiltration in the tumor microenvironment of lung adenocarcinoma. Frontiers in Pharmacology, 13: 857289. https://doi.org/10.3389/fphar.2022.857289
  • 41. Wang, Z., Wang, X., Gao, Y., Wang, Y., Xu, M., Han, Q. & Zhao, X. 2020. IL-7R gene variants are associated with breast cancer susceptibility in Chinese Han women. International Immunopharmacology, 86: 106756. https://doi.org/10.1016/j.intimp.2020.106756
  • 42. Winer, H., Rodrigues, G.O.L., Hixon, J.A., Aiello, F.B., Hsu, T.C., Wachter, B.T., Li, W. & Durum, S.K. 2022. IL-7: Comprehensive review. Cytokine, 160: 156049. https://doi.org/10.1016/j.cyto.2022.156049
  • 43. Yan, L., He, Y., Zhang, Y., Liu, Y., Xu, L., Han, C., Zhao, Y. & Li, H. 2023. A novel 268 kb deletion combined with a splicing variant in IL7R causes of severe combined immunodeficiency in a Chinese family: a case report. BMC Medical Genomics, 16(1): 323. https://doi.org/10.1186/s12920-023-01765-8
  • 44. Zhang, N., Chen, Y., Lu, H., Zhao, F., Alvarez, R.V., Goncearenco, A., Panchenko, A.R. & Li M. 2020. MutaBind2: Predicting the impacts of single and multiple mutations on protein-protein interactions. iScience, 23(3): 100939. https://doi.org/10.1016/j.isci.2020.100939
  • 45. Zu, L., He, J., Zhou, N., Tang, Q., Liang, M. & Xu, S. 2023. Identification of multiple organ metastasis-associated hub mRNA/miRNA signatures in non-small cell lung cancer. Cell Death and Disease, 14(12): 798. https://doi.org/10.1038/s41419-023-06286-x
There are 45 citations in total.

Details

Primary Language English
Subjects Sequence Analysis, Receptors and Membrane Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Zeynep Tokcaer Keskin 0000-0001-7678-0590

Early Pub Date February 11, 2025
Publication Date April 15, 2025
Submission Date September 9, 2024
Acceptance Date January 21, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

APA Tokcaer Keskin, Z. (2025). In silico analysis of IL7RA missense mutations in lung, breast and skin cancers. Trakya University Journal of Natural Sciences, 26(1), 9-17. https://doi.org/10.23902/trkjnat.1545678
AMA Tokcaer Keskin Z. In silico analysis of IL7RA missense mutations in lung, breast and skin cancers. Trakya Univ J Nat Sci. April 2025;26(1):9-17. doi:10.23902/trkjnat.1545678
Chicago Tokcaer Keskin, Zeynep. “In Silico Analysis of IL7RA Missense Mutations in Lung, Breast and Skin Cancers”. Trakya University Journal of Natural Sciences 26, no. 1 (April 2025): 9-17. https://doi.org/10.23902/trkjnat.1545678.
EndNote Tokcaer Keskin Z (April 1, 2025) In silico analysis of IL7RA missense mutations in lung, breast and skin cancers. Trakya University Journal of Natural Sciences 26 1 9–17.
IEEE Z. Tokcaer Keskin, “In silico analysis of IL7RA missense mutations in lung, breast and skin cancers”, Trakya Univ J Nat Sci, vol. 26, no. 1, pp. 9–17, 2025, doi: 10.23902/trkjnat.1545678.
ISNAD Tokcaer Keskin, Zeynep. “In Silico Analysis of IL7RA Missense Mutations in Lung, Breast and Skin Cancers”. Trakya University Journal of Natural Sciences 26/1 (April 2025), 9-17. https://doi.org/10.23902/trkjnat.1545678.
JAMA Tokcaer Keskin Z. In silico analysis of IL7RA missense mutations in lung, breast and skin cancers. Trakya Univ J Nat Sci. 2025;26:9–17.
MLA Tokcaer Keskin, Zeynep. “In Silico Analysis of IL7RA Missense Mutations in Lung, Breast and Skin Cancers”. Trakya University Journal of Natural Sciences, vol. 26, no. 1, 2025, pp. 9-17, doi:10.23902/trkjnat.1545678.
Vancouver Tokcaer Keskin Z. In silico analysis of IL7RA missense mutations in lung, breast and skin cancers. Trakya Univ J Nat Sci. 2025;26(1):9-17.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.


OSZAR »