Research Article
BibTex RIS Cite
Year 2025, Volume: 20 Issue: 1, 41 - 62, 25.05.2025
https://doi.org/10.29233/sdufeffd.1599092

Abstract

References

  • C. Andreini, B. Ivano and R. Antonio, “Metalloproteomes: a boinformatic approach”, Accounts of Chemical Research, 42, 1471-1479. https://doi.org/10.1021/ar900015x, 2009.
  • J. Cherif, N. Derbel, M. Nakkach, H. Von Bergmann, F. Jemal and Z.B. Lakhdar, “Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress”, Journal of Photochemistry and Photobiology B: Biology, 101, 332-339. https://doi.org/10.1016/j.jphotobiol.2010.08.005, 2010.
  • I. Tolay, “The impact of different zinc (zn) levels on growth and nutrient uptake of basil (Ocimum basilicum l.) grown under salinity stress” PLoS One, 16(2), e0246493, 2021.
  • Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, “Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo catalytic performance through sunlight and antimicrobial activity”, Journal of Hazardous Materials, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079, 2020.
  • M. Shahid, U. Naeem-Ullah, W. Khan, D.S. Saeed and K. Razzaq, “Application of nanotechnology for insect pests management: A review”, Journal of Innovative Sciences, 7, 28–39. http://dx.doi.org/10.17582/journal.jis/2021/7.1.28.39, 2021.
  • P. Sharmaa, M. Urfan, R. Anand, M. Sangral, H.R. Hakla, S. Sharma, R. Das, S. Pal and M. Bhagat, “Green synthesis of zinc oxide nanoparticles using eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize”, Physiology and Molecular Biology of Plants, 28, 363-381. https://doi.org/10.1007/s12298-022-01136-0, 2022.
  • P. Pooja, A.S. Nandwal, M. Chand, A. Pal, A. Kumari, B. Rani, V. Goel and N. Kulshreshtha, “Soil moisture deficit induced changes in antioxidative defense mechanism of sugarcane (Saccharum officinarum) varieties differing in maturity” Indian Journal of Agricultural Sciences, 90(3), 507-512, 2020.
  • A. Salam, M.S. Afridi, M.A. Javed, A. Saleem, A. Hafeez, A.R. Khan, M. Zeeshan, B. Ali, W. Azhar, Z. Ulhassan and Y. Gan, “Nano-Priming Against Abiotic Stress: A way forward towards sustainable agriculture”, Sustainability, 14:14880. https://doi.org/10.3390/su142214880, 2022.
  • V.D. Rajput, T.M. Minkina, A. Behal, S.N. Sushkova, S. Mandzhieva, R. Singh and H.S. Movsesyan, “Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review”, Environmental Nanotechnology, Monitoring & Management, 9, 76-84. https://doi.org/10.1016/j.enmm.2017.12.006, 2018.
  • M. Faizan, F. Yu, C. Chen, A. Faraz and S. Hayat, “Zinc oxide nanoparticles help to enhance plant growth and alleviate abiotic stress: A review”, Current Protein & Peptide Science, 22, 362-375. https://doi.org/10.2174/1389203721666201016144848, 2021.
  • R. Hunt, “Plant Growth Curves. The functional approach to plant growth analysis”, Edward Arnold Ltd. London, UK, ISBN: 9780713128444, pp 248, 1982.
  • S.K. Pandey and H. Singh, “A simple, cost-effective method for leaf area estimation”, Journal of Botany, 658240, 1-6. https://doi.org/10.1155/2011/658240, 2011.
  • B. Salisbury and W. Ross, “Plant Physiology”, 4 th ed. Wadsworth, Belmont, California, pp. 682, 1992.
  • E. Rengifo, R. Urich and A. Herrera, “Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration”, Photosynthetica 40:397-403. https://doi.org/10.1023/A:1022679109425, 2002.
  • N. Orcen, G. Nazarian and M. Gharibkhani, “The responses of stomatal parameters and SPAD value in asian tobacco exposed to chromium”, Polish Journal of Environmental Studies, 22, 1441-1447, 2013.
  • L. Sack, P.D. Cowan, N. Jaikumar and N.M. Holbrook, “The ‘hydrology’of leaves: Co‐ordination of structure and function in temperate woody species”, Plant, Cell & Environment, 26, 1343-1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x, 2003.
  • G.W. Turner, J. Gershenzon and R.B. Croteau, “Development of peltate glandular trichomes of peppermint”, Plant Physiology, 124, 665-680. https://doi.org/10.1104/pp.124.2.665, 2000.
  • V. Velikova, I. Yordanov and A.J.P.S. Edreva, “Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines”, Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1, 2000.
  • R.L. Heath and L. Packer, “Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation”, Archives of Biochemistry and Biophysics, 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1, 1968.
  • C.N. Giannopolitis and S.K. Ries, “Superoxide dismutases: I. occurrence in higher plants”, Plant Physiology, 59, 309-314. https://doi.org/10.1104/pp.59.2.309, 1977.
  • B. Chance and A.C. Maehly, “Assay of catalases and peroxidases”, https://doi.org/10.1016/S0076-6879(55)02300-8, 1955.
  • Y. Nakano and K. Asada, “Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts”, Plant Cell Physiology, 22, 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232, 1981.
  • M.M. Bradford, “A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3, 1976.
  • K. Dulta, G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia and P.K. Chauhan, “Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications”, Journal of Cluster Science, 33, 603-617. https://doi,org/10,1007/s10876-020-01962-w, 2022.
  • T. Khalafi, F. Buazar and K. Ghanemi, “Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants”, Scientific Reports, 9, 6866. https://doi,org/10,1038/s41598-019-43368-3, 2019.
  • M.M. Chikkanna, S.E. Neelagund and K.K. Rajashekarappa, “Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity”, SN Applied Sciences, 1, 1-10. https://doi.org/10.1007/s42452-018-0095-7, 2019.
  • S. Modi, V.K. Yadav, N. Choudhary, A.M. Alswieleh, A.K. Sharma, A.K. Bhardwaj, S.H. Khan, K.K. Yadav, J.K. Vhron and B.H. Jeon, “Onion peel waste mediated-green synthesis of zinc oxide nanoparticles and their phytotoxicity on mung bean and wheat plant growth”, Materials 15, 2393. https://doi.org/10.3390/ma15072393, 2022.
  • S. Thakur, M. Shandilya and G. Guleria, “Appraisement of antimicrobial zinc oxide nanoparticles through Cannabis, Jatropha curcasa, Alovera and Tinospora cordifolia leaves by green synthesis process”, Journal of Environmental Chemical Engineering, 9, 104882. https://doi.org/10.1016/j.jece. 2020.104882, 2020.
  • S. Sharmab, S.S. Singh, A. Bahuguna, B. Yadav, A. Barthwal, R. Nandan, R. Khatana, A. Pandey, R. Thakur and H. Singh, “Nanotechnology: An efficient tool in plant nutrition management. In Ecosystem Services: Types”, Management and Benefits. Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022.
  • H. Lambers, R.S. Oliveira, H. Lambers and R.S. Oliveira, “Photosynthesis, respiration, and long-distance transport: photosynthesis”, Plant Physiological. Ecology, 11, 114. https://doi.org/10.1007/978-3-030-29639-1_2, 2019.
  • V.L.R. Pullagurala, I.O. Adisa, S. Rawat, S. Kalagara, J.A. Hernandez-Viezcas, J.R. Peralta-Videa and J.L. Gardea-Torresdey, “ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum)”, Plant Physiology and Biochemistry, 132, 120-127. https://doi.org/10.1016/j.plaphy.2018.08.037, 2018.
  • X. Wang, X. Yang, S. Chen, Q. Li, W. Wang, C. Hou and S. Wang, “Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis”, Frontiers in Plant Science, 6, 1243. https://doi.org/10.3389/fpls.2015.01243, 2016.
  • M.U. Hassan, M. Aamer, M. Umer Chattha, T. Haiying, B. Shahzad, L. Barbanti and H. Guoqin, “The critical role of zinc in plants facing the drought stress”, Agriculture, 10, 396. https://doi.org/10.3390/agriculture10090396, 2020.
  • S.A. Casson and A.M. Hetherington, “Environmental regulation of stomatal development”, Current Opinion in Plant Biology, 13, 90-95. https://doi.org/10.1016/j.pbi.2009.08.005, 2010.
  • T. Lawson, S. Von Caemmerer and I. Baroli, “Photosynthesis and stomatal behaviour”, Progress in Botany, 72:265-304. https://doi.org/10.1007/978-3-642-13145-5_11, 2011.
  • R.S. Caine, X. Yin, J. Sloan, E.L. Harrison, U. Mohammed, T. Fulton and J.E. Gray, “Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions”, New Phytol. 221, 371-384. https://doi.org/10.1111/nph.15344, 2019.
  • R. Schuurink and A. Tissier, “Glandular trichomes: micro‐organs with model status?”, New Phytologist, 225, 2251-2266. https://doi.org/10.1111/nph.16283, 2020.
  • A.M. Plumbe and C.M. Willmer, “Phytoalexins, water‐stress and stomata: III. The effects of some phenolics, fatty acids and some other compounds on stomatal responses”, New Phytologist, 103, 17-22. https://doi.org/10.1111/j.1469-8137.1986.tb00592.x, 1986.
  • K. Li, T. Zhang, H. Li, L.D. Zhang and F. Li, “Phenolic acids inhibit the photosynthetic productivity of poplar”, Photosynthetica, 58:5. https://doi.org/10.32615/ps.2020.071, 2020.
  • R. Marchiosi, W.D. Dos Santos, R.P. Constantin, R.B. De Lima, AR. Soares, A. Finger-Teixeira and O. Ferrarese-Filho, “Biosynthesis and metabolic actions of simple phenolic acids in plants”, Phytochemistry Review. 19, 865-906, 2020.

Biostimulation of Biogenic Zinc Oxide Nanoparticles on Morpho-Physiological Development of Basil Seedlings

Year 2025, Volume: 20 Issue: 1, 41 - 62, 25.05.2025
https://doi.org/10.29233/sdufeffd.1599092

Abstract

Nanomaterials derived from essential nutrients such as zinc enable the synthesis of nanocomposite materials and nano-fertilizers, offering broader agricultural applications and improved human nutrition. In this study, thyme leaf extract was used to synthesize biogenic zinc-oxide nanoparticles (BZO-NPs), and their effects on the micro-morphological and biochemical parameters of sweet basil (Ocimum basilicum L.) were investigated. The synthesized BZO-NPs were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDXS). The BZO-NPs exhibited a crystalline spherical structure with sizes ranging from 50 to 100 nm. Different BZO-NP concentrations (25, 50, 100, and 200 mg L-1) were applied to basil plants during the vegetative growth stage. The relative growth rate, total chlorophyll content, and relative water content ratio increased at all BZO-NP concentrations except 200 mg L-1, with the highest values observed at 50 mg L-1 BZO-NP. Stomata density decreased at all BZO-NP concentrations except 50 mg L-1 BZO-NP, and stomata sizes also decreased at all BZO-NP concentrations. The number of peltate trichomes increased on both leaf surfaces with higher BZO-NP concentrations, with a more pronounced increase on the upper leaf surface. Changes in peltate trichomes were associated with the presence of three phenolic compounds: caffeic acid, rosmaniric acid, and chlorogenic acid. The treatment of BZO-NP concentrations also influenced the activity of antioxidant enzymes (SOD, CAT, GR and APX) in sweet basil. Treatment with BZO-NPs at all concentrations reduced oxidative stress by decreasing hydrogen peroxide levels compared to the control, while malondialdehyde (MDA) content remained unchanged. In conclusion, BZO-NPs, being economically viable and environmentally sustainable, demonstrate significant potential as nano-based nutrient sources for basil cultivation.

References

  • C. Andreini, B. Ivano and R. Antonio, “Metalloproteomes: a boinformatic approach”, Accounts of Chemical Research, 42, 1471-1479. https://doi.org/10.1021/ar900015x, 2009.
  • J. Cherif, N. Derbel, M. Nakkach, H. Von Bergmann, F. Jemal and Z.B. Lakhdar, “Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress”, Journal of Photochemistry and Photobiology B: Biology, 101, 332-339. https://doi.org/10.1016/j.jphotobiol.2010.08.005, 2010.
  • I. Tolay, “The impact of different zinc (zn) levels on growth and nutrient uptake of basil (Ocimum basilicum l.) grown under salinity stress” PLoS One, 16(2), e0246493, 2021.
  • Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, “Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo catalytic performance through sunlight and antimicrobial activity”, Journal of Hazardous Materials, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079, 2020.
  • M. Shahid, U. Naeem-Ullah, W. Khan, D.S. Saeed and K. Razzaq, “Application of nanotechnology for insect pests management: A review”, Journal of Innovative Sciences, 7, 28–39. http://dx.doi.org/10.17582/journal.jis/2021/7.1.28.39, 2021.
  • P. Sharmaa, M. Urfan, R. Anand, M. Sangral, H.R. Hakla, S. Sharma, R. Das, S. Pal and M. Bhagat, “Green synthesis of zinc oxide nanoparticles using eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize”, Physiology and Molecular Biology of Plants, 28, 363-381. https://doi.org/10.1007/s12298-022-01136-0, 2022.
  • P. Pooja, A.S. Nandwal, M. Chand, A. Pal, A. Kumari, B. Rani, V. Goel and N. Kulshreshtha, “Soil moisture deficit induced changes in antioxidative defense mechanism of sugarcane (Saccharum officinarum) varieties differing in maturity” Indian Journal of Agricultural Sciences, 90(3), 507-512, 2020.
  • A. Salam, M.S. Afridi, M.A. Javed, A. Saleem, A. Hafeez, A.R. Khan, M. Zeeshan, B. Ali, W. Azhar, Z. Ulhassan and Y. Gan, “Nano-Priming Against Abiotic Stress: A way forward towards sustainable agriculture”, Sustainability, 14:14880. https://doi.org/10.3390/su142214880, 2022.
  • V.D. Rajput, T.M. Minkina, A. Behal, S.N. Sushkova, S. Mandzhieva, R. Singh and H.S. Movsesyan, “Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review”, Environmental Nanotechnology, Monitoring & Management, 9, 76-84. https://doi.org/10.1016/j.enmm.2017.12.006, 2018.
  • M. Faizan, F. Yu, C. Chen, A. Faraz and S. Hayat, “Zinc oxide nanoparticles help to enhance plant growth and alleviate abiotic stress: A review”, Current Protein & Peptide Science, 22, 362-375. https://doi.org/10.2174/1389203721666201016144848, 2021.
  • R. Hunt, “Plant Growth Curves. The functional approach to plant growth analysis”, Edward Arnold Ltd. London, UK, ISBN: 9780713128444, pp 248, 1982.
  • S.K. Pandey and H. Singh, “A simple, cost-effective method for leaf area estimation”, Journal of Botany, 658240, 1-6. https://doi.org/10.1155/2011/658240, 2011.
  • B. Salisbury and W. Ross, “Plant Physiology”, 4 th ed. Wadsworth, Belmont, California, pp. 682, 1992.
  • E. Rengifo, R. Urich and A. Herrera, “Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration”, Photosynthetica 40:397-403. https://doi.org/10.1023/A:1022679109425, 2002.
  • N. Orcen, G. Nazarian and M. Gharibkhani, “The responses of stomatal parameters and SPAD value in asian tobacco exposed to chromium”, Polish Journal of Environmental Studies, 22, 1441-1447, 2013.
  • L. Sack, P.D. Cowan, N. Jaikumar and N.M. Holbrook, “The ‘hydrology’of leaves: Co‐ordination of structure and function in temperate woody species”, Plant, Cell & Environment, 26, 1343-1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x, 2003.
  • G.W. Turner, J. Gershenzon and R.B. Croteau, “Development of peltate glandular trichomes of peppermint”, Plant Physiology, 124, 665-680. https://doi.org/10.1104/pp.124.2.665, 2000.
  • V. Velikova, I. Yordanov and A.J.P.S. Edreva, “Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines”, Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1, 2000.
  • R.L. Heath and L. Packer, “Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation”, Archives of Biochemistry and Biophysics, 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1, 1968.
  • C.N. Giannopolitis and S.K. Ries, “Superoxide dismutases: I. occurrence in higher plants”, Plant Physiology, 59, 309-314. https://doi.org/10.1104/pp.59.2.309, 1977.
  • B. Chance and A.C. Maehly, “Assay of catalases and peroxidases”, https://doi.org/10.1016/S0076-6879(55)02300-8, 1955.
  • Y. Nakano and K. Asada, “Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts”, Plant Cell Physiology, 22, 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232, 1981.
  • M.M. Bradford, “A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3, 1976.
  • K. Dulta, G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia and P.K. Chauhan, “Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications”, Journal of Cluster Science, 33, 603-617. https://doi,org/10,1007/s10876-020-01962-w, 2022.
  • T. Khalafi, F. Buazar and K. Ghanemi, “Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants”, Scientific Reports, 9, 6866. https://doi,org/10,1038/s41598-019-43368-3, 2019.
  • M.M. Chikkanna, S.E. Neelagund and K.K. Rajashekarappa, “Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity”, SN Applied Sciences, 1, 1-10. https://doi.org/10.1007/s42452-018-0095-7, 2019.
  • S. Modi, V.K. Yadav, N. Choudhary, A.M. Alswieleh, A.K. Sharma, A.K. Bhardwaj, S.H. Khan, K.K. Yadav, J.K. Vhron and B.H. Jeon, “Onion peel waste mediated-green synthesis of zinc oxide nanoparticles and their phytotoxicity on mung bean and wheat plant growth”, Materials 15, 2393. https://doi.org/10.3390/ma15072393, 2022.
  • S. Thakur, M. Shandilya and G. Guleria, “Appraisement of antimicrobial zinc oxide nanoparticles through Cannabis, Jatropha curcasa, Alovera and Tinospora cordifolia leaves by green synthesis process”, Journal of Environmental Chemical Engineering, 9, 104882. https://doi.org/10.1016/j.jece. 2020.104882, 2020.
  • S. Sharmab, S.S. Singh, A. Bahuguna, B. Yadav, A. Barthwal, R. Nandan, R. Khatana, A. Pandey, R. Thakur and H. Singh, “Nanotechnology: An efficient tool in plant nutrition management. In Ecosystem Services: Types”, Management and Benefits. Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022.
  • H. Lambers, R.S. Oliveira, H. Lambers and R.S. Oliveira, “Photosynthesis, respiration, and long-distance transport: photosynthesis”, Plant Physiological. Ecology, 11, 114. https://doi.org/10.1007/978-3-030-29639-1_2, 2019.
  • V.L.R. Pullagurala, I.O. Adisa, S. Rawat, S. Kalagara, J.A. Hernandez-Viezcas, J.R. Peralta-Videa and J.L. Gardea-Torresdey, “ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum)”, Plant Physiology and Biochemistry, 132, 120-127. https://doi.org/10.1016/j.plaphy.2018.08.037, 2018.
  • X. Wang, X. Yang, S. Chen, Q. Li, W. Wang, C. Hou and S. Wang, “Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis”, Frontiers in Plant Science, 6, 1243. https://doi.org/10.3389/fpls.2015.01243, 2016.
  • M.U. Hassan, M. Aamer, M. Umer Chattha, T. Haiying, B. Shahzad, L. Barbanti and H. Guoqin, “The critical role of zinc in plants facing the drought stress”, Agriculture, 10, 396. https://doi.org/10.3390/agriculture10090396, 2020.
  • S.A. Casson and A.M. Hetherington, “Environmental regulation of stomatal development”, Current Opinion in Plant Biology, 13, 90-95. https://doi.org/10.1016/j.pbi.2009.08.005, 2010.
  • T. Lawson, S. Von Caemmerer and I. Baroli, “Photosynthesis and stomatal behaviour”, Progress in Botany, 72:265-304. https://doi.org/10.1007/978-3-642-13145-5_11, 2011.
  • R.S. Caine, X. Yin, J. Sloan, E.L. Harrison, U. Mohammed, T. Fulton and J.E. Gray, “Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions”, New Phytol. 221, 371-384. https://doi.org/10.1111/nph.15344, 2019.
  • R. Schuurink and A. Tissier, “Glandular trichomes: micro‐organs with model status?”, New Phytologist, 225, 2251-2266. https://doi.org/10.1111/nph.16283, 2020.
  • A.M. Plumbe and C.M. Willmer, “Phytoalexins, water‐stress and stomata: III. The effects of some phenolics, fatty acids and some other compounds on stomatal responses”, New Phytologist, 103, 17-22. https://doi.org/10.1111/j.1469-8137.1986.tb00592.x, 1986.
  • K. Li, T. Zhang, H. Li, L.D. Zhang and F. Li, “Phenolic acids inhibit the photosynthetic productivity of poplar”, Photosynthetica, 58:5. https://doi.org/10.32615/ps.2020.071, 2020.
  • R. Marchiosi, W.D. Dos Santos, R.P. Constantin, R.B. De Lima, AR. Soares, A. Finger-Teixeira and O. Ferrarese-Filho, “Biosynthesis and metabolic actions of simple phenolic acids in plants”, Phytochemistry Review. 19, 865-906, 2020.
There are 40 citations in total.

Details

Primary Language English
Subjects Plant Physiology, Plant Morphology and Anatomy
Journal Section Makaleler
Authors

Semra Kılıç 0000-0001-9494-2952

Sercan Önder 0000-0002-8065-288X

Damla Önder 0000-0002-6639-3818

Havva Kaya 0000-0001-7083-0542

Publication Date May 25, 2025
Submission Date December 10, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

IEEE S. Kılıç, S. Önder, D. Önder, and H. Kaya, “Biostimulation of Biogenic Zinc Oxide Nanoparticles on Morpho-Physiological Development of Basil Seedlings”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 20, no. 1, pp. 41–62, 2025, doi: 10.29233/sdufeffd.1599092.
OSZAR »