Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 3, 971 - 984, 04.06.2025
https://doi.org/10.12991/jrespharm.1693824

Abstract

References

  • [1]Yasir B, Astuti AD, Raihan M, Natzir R, Subehan S, Rohman A, Alam G. Optimization of Pagoda (Clerodendrum paniculatum L.) extraction based by analytical factorial design approach, ıts phytochemical compound, and cytotoxicity activity. Egypt J Chem. 2022; 65(9): 421-430. https://doi.org/10.21608/EJCHEM.2022.82407.4060
  • [2]Kuźma Ł, Gomulski J. Biologically active diterpenoids in the Clerodendrum Genus—A Review. Int J Mol Sci. 2022; 23(19): 11001. https://doi.org/10.3390/ijms231911001
  • [3]Wang JH, Luan F, He XD, Wang Y, Li MX. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J Tradit Complement Med. 2018; 8(1): 24-38. https://doi.org/10.1016/j.jtcme.2017.04.001
  • [4]Priyanka K, Kuppast IJ, Gururaj SV, Chethan IA. Screening of aerial parts of the plant Clerodendrum paniculatum Linn for anti-convulsant activity. Res J Pahrmacol Pharmacodyn. 2019; 11(1): 1-4. https://doi.org/10.5958/2321-5836.2019.00001.6
  • [5]Prathima TS, Ahmad MG, Karuppasamy R, Chanda K, Balamurali MM. Investigation on phyto‐active constituent of Clerodendrum paniculatum as therapeutic agent against viral diseases. ChemistrySelect. 2023; 8(4): ae202203932. https://doi.org/10.1002/slct.202203932
  • [6]Varghese S, Kannappan P, Kanakasabapathi D, Madathil S, Perumalsamy M. Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats. Biocatal Agric Biotechnol. 2021; 36: 102095. https://doi.org/10.1016/j.bcab.2021.102095
  • [7]Kopilakkal R, Musuvathi BM. Evaluation of hepatoprotective activity of Clerodendrum paniculatum leaf on carbon tetrachloride-ınduced liver toxicity model in swiss albino rats and ıts characterization by GC-MS. Endocr Metab Immune Disord Drug Targets. 2020; 20(7): 1097-1109. https://doi.org/10.2174/1871530320666200312152331
  • [8]Kopilakkal R, Chanda K, Balamurali MM. Hepatoprotective and antioxidant capacity of Clerodendrum paniculatum flower extracts against carbon tetrachloride-induced hepatotoxicity in rats. ACS omega. 2021; 6(40): 26489-26498. https://doi.org/10.1021/acsomega.1c03722
  • [9]Pertiwi D, Sitorus P, Hafiz I, Satria D. Analysis of component and antibacterial activity of ethanol extract and ethyl acetate fraction of Pagoda (Clerodendrum paniculatum L.) leaves against Pseudomonas aeruginosa and MRSA. Res J Pharm Technol. 2022; 15(7): 3047-3050. https://doi.org/10.52711/0974-360X.2022.00509
  • [10]Sindhu TJ, Akhilesh KJ, Jose A, Binsiya KP, Thomas B, Wilson E. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: In silico approaches. Asian J Pharm Technol. 2020; 10(2): 60-64. https://doi.org/10.5958/2231-5713.2020.00012.4
  • [11]Hegde NP, Hungund BS. Phytochemical profiling of Clerodendrum paniculatum leaf extracts: GC-MS, LC-MS analysis and comparative evaluation of antimicrobial, antioxidant & cytotoxic effects. Nat Prod Res. 2023;37(17):2957-2964. https://doi.org/10.1080/14786419.2022.2140339
  • [12]Arba M, Arfan A, Yamin Y, Zubair MS. The potential of Clerodendrum paniculatum leaves fraction as a 3-Chymotrypsin-Like (3CL) protease ınhibitor of SARS-CoV-2. Indones J Chem. 2023; 23(3): 770-781. https://doi.org/10.22146/ijc.81447
  • [13]Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019; 20(6): 353-367. https://doi.org/10.1038/s41580-019-0108-4
  • [14]Kharbach M, Marmouzi I, El Jemli M, Bouklouze A, Heyden YV. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting-A review. J Pharm Biomed Anal. 2020; 177: 112849. https://doi.org/10.1016/j.jpba.2019.112849
  • [15]Olawode EO, Tandlich R, Cambray G. 1H-NMR profiling and chemometric analysis of selected honeys from South Africa, Zambia, and Slovakia. Molecules. 2018; 23(3): 578. https://doi.org/10.3390/molecules23030578
  • [16]Villa-Ruano N, Ramírez-Meraz M, Méndez-Aguilar R, Zepeda-Vallejo LG, Álvarez-Bravo A, Pérez-Hernández N, Becerra-Martínez E. 1H NMR-based metabolomics profiling of ten new races from Capsicum annuum cv. serrano produced in Mexico. Food Res Int. 2019; 119: 785-792. https://doi.org/10.3390/molecules23030578
  • [17]Deborde C, Fontaine JX, Jacob D, Botana A, Nicaise V, Richard-Forget F, Lecomte S, Decourtil C, Hamade K, Mesnard F, Moing A, Molinié R. Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: Extract preparation, standardization, automation and spectra processing. Metabolomics. 2019 ;15(3):28. https://doi.org/10.1007/s11306-019-1488-3
  • [18]Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite fingerprinting based on 1H-NMR spectroscopy and liquid chromatography for the authentication of herbal products. Molecules. 2022; 27(4): 1198. https://doi.org/10.3390/molecules27041198
  • [19] Yasir B, Alam G. Chemometrics-assisted fingerprinting profiling of extract variation from Pagoda (Clerodendrum paniculatum L.) using TLC-Densitometric method. Egypt J Chem. 2023; 66(13): 1589-1596. https://doi.org/10.21608/ejchem.2023.89181.4282
  • [20]Cui C, Xia M, Chen J, Shi B, Peng C, Cai H, Jin L, Hou R. 1H NMR-based metabolomics combined with chemometrics to detect edible oil adulteration in huajiao (Zanthoxylum bungeanum Maxim.). Food Chem. 2023; 423: 136305. https://doi.org/10.1016/j.foodchem.2023.136305
  • [21]Zayed A, Abdelwareth A, Mohamed TA, Fahmy HA, Porzel A, Wessjohann LA, Farag MA. Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chem. 2022; 373: 131452. https://doi.org/10.1016/j.foodchem.2021.131452
  • [22]Decker C, Krapf R, Kuballa T, Bunzel M. Nontargeted analysis of lipid extracts using 1H NMR spectroscopy combined with multivariate statistical analysis to discriminate between the animal species of raw and processed meat. J Agric Food Chem. 2022; 70(23): 7230-7239. https://doi.org/10.1021/acs.jafc.2c01871
  • [23]Rebiai A, Seghir BB, Hemmami H, Zeghoud S, Amor IB, Kouadri I, Messaoudi M, Pasdaran A, Caruso G, Sharma S, Atanassova M, Pohl P. Quality assessment of medicinal plants via chemometric exploration of quantitative NMR data: A Review. Compounds. 2022; 2(2): 163-181. https://doi.org/10.3390/compounds2020012
  • [24]Jolliffe I. A 50-year personal journey through time with principal component analysis. J Multivar Anal. 2022; 188: 104820. https://doi.org/10.1016/j.jmva.2021.104820
  • [25]Khan MSI, Islam N, Uddin J, Islam S, Nasir MK. Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J Kıng Saud Unıv-Com. 2022; 34(8): 4773-4781. https://doi.org/10.1016/j.jksuci.2021.06.003
  • [26]Singh MK, Kumar A, Nimmanapalli R, Pandey AK. Proteomics‐based milk whey proteome profiling of Indian Jersey cross‐breed cows followed by chromosomal mapping. J Sci Food Agric. 2023; 102(11): 5634-5640. https://doi.org/10.1002/jsfa.12640
  • [27]Walls FN, McGarvey DJ. Building a macrosystems ecology framework to identify links between environmental and human health: A random forest modelling approach. People Nat. 2023; 5(1): 183-197. https://doi.org/10.1002/pan3.10427
  • [28]Narvaez-Montoya C, Mahlknecht J, Torres-Martínez JA, Mora A, Bertrand G. Seawater intrusion pattern recognition supported by unsupervised learning: A systematic review and application. Sci Total Environ. 2023; 864: 160933. https://doi.org/10.1016/j.scitotenv.2022.160933
  • [29]Cornea-Cipcigan M, Pamfil D, Sisea CR, Margaoan R. Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Front Plant Sci. 2023; 14: 1100099. https://doi.org/10.3389/fpls.2023.1100099
  • [30]Das SC, Qais MN, Kuddus MR, Hasan CM. Isolation and characterization of (22E, 24S)-Stigmasta-5, 22, 25-trien-3β-ol from Clerodendrum viscosum Vent. Asian J Chem. 2013; 25(11): 6447-6448.
  • [31]Akihisa T, Tamura T, Matsumoto T, Kokke WCMC, Ghosh P, Thakur S. (22Z, 24S)-Stigmasta-5, 22, 25-trien-3β-ol and other novel sterols from Clerodendrum scandens: first report of the isolation of a cis-Δ22-unsaturated sterol from a higher plant. J Chem Soc Perkin Trans. 1. 1990; (8): 2213-2218. https://doi.org/10.1039/P19900002213
  • [32]Oscar NDY, Joel TNS, Ange AANG, Desire S, Brice SNF, Barthelemy N. Chemical constituents of Clerodendrum splendens (Lamiaceae) and their antioxidant activities. J Dis Med Plants. 2018; 4(5): 120-127. https://doi.org/10.11648/j.jdmp.20180405.11
  • [33]Lin YL, Kuo YH, Chen YL. Two new clerodane-type diterpenoids, clerodinins A and B, from Clerodendron brachyanthum Schauer. Chem Pharm Bull. 1989; 37(8): 2191-2193. https://doi.org/10.1248/cpb.37.2191
  • [34]Pandey R, Verma RK, Singh SC, Gupta MM. 4α-Methyl-24β-ethyl-5α-cholesta-14, 25-dien-3β-ol and 24β-ethylcholesta-5, 9 (11), 22E-trien-3β-ol, sterols from Clerodendrum inerme. Phytochemistry. 2003; 63(4): 415-420. https://doi.org/10.1016/S0031-9422(03)00146-8
  • [35]Panthong K, Boonsri S. Chemical constituents from the twigs and stems of Clerodendrum serratum. Burapha Sci J. 2018; 1330-1344.
  • [36]Carballelra NM, Rodriguez J. Two novel phospholipid fatty acids from the Caribbean sponge Geodia gibberosa. Lipids. 1991; 26(4): 324-326. https://doi.org/10.1007/BF02537145
  • [37]Barnathan G, Doumenq P, Njinkoué JM, Mirallès J, Debitus C, Lévi C, Komprobst JM. Sponge fatty acids. 3. Occurrence of series of n−7 monoenoic and iso‐5, 9 dienoic long‐chain fatty acids in the phospholipids of the marine sponge Cinachyrella aff. schulzei keller. Lipids. 1994; 29(4): 297. https://doi.org/10.1007/BF02536335
  • [38]Wang D, Zhang J, Li D. Hydrophobic constituents of Polygonatum odoratum rhizome from the Qinling mountains and their antisepsis activity. J Wuhan Bot Res. 2010; 28(5): 644-647.
  • [39]Carballeira NM, Pagán M, Rodríguez AD. Identification and Total synthesis of novel fatty acids from the Caribbean sponge Calyx podatypa. J Nat Prod. 1998; 61(8): 1049-1052. https://doi.org/10.1021/np9801413
  • [40]Hegde NP, Hungund BS. Isolation, identification and in vitro biological evaluation of phytochemicals from Memecylon randerianum: A medicinal plant endemic to Western Ghats of India. Nat Prod Res. 2021; 35(23): 5334-5338. https://doi.org/10.1080/14786419.2020.1756797
  • [41]Wang P, Guo F, Tan J, Huang C, Wang G, Li Y. A novel C29 sterol from Clerodendrum cyrtophyllum. Chem Nat Compd. 2012; 48: 594-596. https://doi.org/10.1007/s10600-012-0320-3
  • [42]Somwong P, Suttisri R. Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots. J Integr Med. 2018; 16(1): 57–61. https://doi.org/10.1016/j.joim.2017.12.004
  • [43]Gleason JG, Ku TW, McCarthy ME, Weichman BM, Holden D, Osborn RR, Zabko-Potapovich B, Berkowitz B, Wasserman MA. 2-nor-leukotriene analogs: antagonists of the airway and vascular smooth muscle effects of leukotriene C4, D4 and E4. Biochem Biophys Res Commun. 1983; 117(3): 732-739. https://doi.org/10.1016/0006-291X(83)91658-3
  • [44]Omoregie GO, Ovuakporie-Uvo O, Idu M. Phyto-composition and antimicrobial activities of the ethanol seed extracts of Buchholzia coriacea. Afr J Pharmacol Therapeut. 2018; 7(2): 53-58.
  • [45]Pakrashi SC, Achari B. Stigmasta-5,22,25-trien-3β-ol : a new sterol from Alangium lamarckii Thw. Tetrahedron Lett. 1971; 12(4): 365–368. https://doi.org/10.1016/S0040-4039(01)96443-3
  • [46]Ditchou YOG, Kombo CDA, Opono MTGM, Nyasse B. Antioxidant activity of the chemical constituents isolated from the roots of Albizia ferruginea (Guill. & Perr.) Benth. (Fabaceae). J Adv Chem Sci. 2019; 5(3): 646-651. https://doi.org/10.30799/jacs.212.19050301
  • [47]Rahim A, Saito Y, Miyake K, Gotodf M, Chen CH, Alam G, Morris-Natschke S, Lee KH, Nakagawa-Goto K. Kleinhospitine E and cycloartane triterpenoids from Kleinhovia hospita. J Nat Prod. 2018; 1(7): 1619-1627. https://doi.org/10.1021/acs.jnatprod.8b00211
  • [48]Yasir B, Rahim A, Lallo S, Saito Y, Goto KN, Rohman A, Alam G. Cytotoxicity activity, metabolite profiling, and ısolation compound from crude hexane extract of Cleome rutidospermae. Asian Pac J Cancer Prev. 2023; 24(10): 3345-3352. https://doi.org/10.31557/APJCP.2023.24.10.3345
  • [49]Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007; 42: 377–387. https://doi.org/10.1016/j.ymeth.2007.01.003
  • [50]Lamkanfi M, Kanneganti TD, Van Damme P, Berghe TV, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Nuénñez G. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008; 7(12): 2350-2363. https://doi.org/10.1074/mcp.M800132-MCP200

Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity

Year 2025, Volume: 29 Issue: 3, 971 - 984, 04.06.2025
https://doi.org/10.12991/jrespharm.1693824

Abstract

One of the best solutions to understanding the chemical data of complex natural substances is to use chemometric techniques. This research aims to apply chemometric techniques, specifically principal component analysis (PCA) and cluster analysis (CA), to determine the fingerprint profiles of nine pagoda extracts (PCP) and their isolated compounds using 1H NMR data and to conduct initial cytotoxicity tests on the extracts. PCP flowers were extracted using various solvents and extraction methods, resulting in 9 types of extracts. The methanol-extracted flower portion was subjected to maceration and the compounds were then isolated using various techniques, including silica gel, column chromatography, and preparative thin layer chromatography (PTLC), which yielded 3 types of compounds. The structures were identified using 1D and 2D NMR and mass spectrometry. Meanwhile, their cytotoxic activity was tested on MCF-7, A549, KB, KB-VIN, and MDA-MB-231 cancer cells using the sulforhodamine B (SRB) assay. The research results revealed that compounds (1) stigmasta-5,22,25-trien-3β-ol, (2) 6-nonadecenoic acid, and (3) 6,9-nonadecadienoic acid, methyl ester was discovered in this plant for the first time. The fingerprinting profile of the PCP extracts and compounds showed resonance at δH 5.33 ppm (m, 1H) and δH 5.24 ppm (m, 1H). PCA of the 12 samples with eigenvalues > 1 explained 91% of the data and exhibited a normal distribution. The score plot was influenced by PC1 (82.2%) and PC2 (10.5%). The loading plot and CA combined with the linearity of (1), (2), and (3) with respect to the variation in extracts had determination coefficients (R² = 0.7550 - 0.9288) and similarities (78.26% - 98.98%). Cytotoxicity activity showed weak growth inhibition (> 89.6%) in all tested cancer cell types. In conclusion, 1H NMR spectrum and chemometrics detects the fingerprinting profile of Pagoda extract variations, clustering extracts, identifying marker compounds, and potential for cytotoxicity studies in cancer cells.

References

  • [1]Yasir B, Astuti AD, Raihan M, Natzir R, Subehan S, Rohman A, Alam G. Optimization of Pagoda (Clerodendrum paniculatum L.) extraction based by analytical factorial design approach, ıts phytochemical compound, and cytotoxicity activity. Egypt J Chem. 2022; 65(9): 421-430. https://doi.org/10.21608/EJCHEM.2022.82407.4060
  • [2]Kuźma Ł, Gomulski J. Biologically active diterpenoids in the Clerodendrum Genus—A Review. Int J Mol Sci. 2022; 23(19): 11001. https://doi.org/10.3390/ijms231911001
  • [3]Wang JH, Luan F, He XD, Wang Y, Li MX. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J Tradit Complement Med. 2018; 8(1): 24-38. https://doi.org/10.1016/j.jtcme.2017.04.001
  • [4]Priyanka K, Kuppast IJ, Gururaj SV, Chethan IA. Screening of aerial parts of the plant Clerodendrum paniculatum Linn for anti-convulsant activity. Res J Pahrmacol Pharmacodyn. 2019; 11(1): 1-4. https://doi.org/10.5958/2321-5836.2019.00001.6
  • [5]Prathima TS, Ahmad MG, Karuppasamy R, Chanda K, Balamurali MM. Investigation on phyto‐active constituent of Clerodendrum paniculatum as therapeutic agent against viral diseases. ChemistrySelect. 2023; 8(4): ae202203932. https://doi.org/10.1002/slct.202203932
  • [6]Varghese S, Kannappan P, Kanakasabapathi D, Madathil S, Perumalsamy M. Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats. Biocatal Agric Biotechnol. 2021; 36: 102095. https://doi.org/10.1016/j.bcab.2021.102095
  • [7]Kopilakkal R, Musuvathi BM. Evaluation of hepatoprotective activity of Clerodendrum paniculatum leaf on carbon tetrachloride-ınduced liver toxicity model in swiss albino rats and ıts characterization by GC-MS. Endocr Metab Immune Disord Drug Targets. 2020; 20(7): 1097-1109. https://doi.org/10.2174/1871530320666200312152331
  • [8]Kopilakkal R, Chanda K, Balamurali MM. Hepatoprotective and antioxidant capacity of Clerodendrum paniculatum flower extracts against carbon tetrachloride-induced hepatotoxicity in rats. ACS omega. 2021; 6(40): 26489-26498. https://doi.org/10.1021/acsomega.1c03722
  • [9]Pertiwi D, Sitorus P, Hafiz I, Satria D. Analysis of component and antibacterial activity of ethanol extract and ethyl acetate fraction of Pagoda (Clerodendrum paniculatum L.) leaves against Pseudomonas aeruginosa and MRSA. Res J Pharm Technol. 2022; 15(7): 3047-3050. https://doi.org/10.52711/0974-360X.2022.00509
  • [10]Sindhu TJ, Akhilesh KJ, Jose A, Binsiya KP, Thomas B, Wilson E. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: In silico approaches. Asian J Pharm Technol. 2020; 10(2): 60-64. https://doi.org/10.5958/2231-5713.2020.00012.4
  • [11]Hegde NP, Hungund BS. Phytochemical profiling of Clerodendrum paniculatum leaf extracts: GC-MS, LC-MS analysis and comparative evaluation of antimicrobial, antioxidant & cytotoxic effects. Nat Prod Res. 2023;37(17):2957-2964. https://doi.org/10.1080/14786419.2022.2140339
  • [12]Arba M, Arfan A, Yamin Y, Zubair MS. The potential of Clerodendrum paniculatum leaves fraction as a 3-Chymotrypsin-Like (3CL) protease ınhibitor of SARS-CoV-2. Indones J Chem. 2023; 23(3): 770-781. https://doi.org/10.22146/ijc.81447
  • [13]Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019; 20(6): 353-367. https://doi.org/10.1038/s41580-019-0108-4
  • [14]Kharbach M, Marmouzi I, El Jemli M, Bouklouze A, Heyden YV. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting-A review. J Pharm Biomed Anal. 2020; 177: 112849. https://doi.org/10.1016/j.jpba.2019.112849
  • [15]Olawode EO, Tandlich R, Cambray G. 1H-NMR profiling and chemometric analysis of selected honeys from South Africa, Zambia, and Slovakia. Molecules. 2018; 23(3): 578. https://doi.org/10.3390/molecules23030578
  • [16]Villa-Ruano N, Ramírez-Meraz M, Méndez-Aguilar R, Zepeda-Vallejo LG, Álvarez-Bravo A, Pérez-Hernández N, Becerra-Martínez E. 1H NMR-based metabolomics profiling of ten new races from Capsicum annuum cv. serrano produced in Mexico. Food Res Int. 2019; 119: 785-792. https://doi.org/10.3390/molecules23030578
  • [17]Deborde C, Fontaine JX, Jacob D, Botana A, Nicaise V, Richard-Forget F, Lecomte S, Decourtil C, Hamade K, Mesnard F, Moing A, Molinié R. Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: Extract preparation, standardization, automation and spectra processing. Metabolomics. 2019 ;15(3):28. https://doi.org/10.1007/s11306-019-1488-3
  • [18]Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite fingerprinting based on 1H-NMR spectroscopy and liquid chromatography for the authentication of herbal products. Molecules. 2022; 27(4): 1198. https://doi.org/10.3390/molecules27041198
  • [19] Yasir B, Alam G. Chemometrics-assisted fingerprinting profiling of extract variation from Pagoda (Clerodendrum paniculatum L.) using TLC-Densitometric method. Egypt J Chem. 2023; 66(13): 1589-1596. https://doi.org/10.21608/ejchem.2023.89181.4282
  • [20]Cui C, Xia M, Chen J, Shi B, Peng C, Cai H, Jin L, Hou R. 1H NMR-based metabolomics combined with chemometrics to detect edible oil adulteration in huajiao (Zanthoxylum bungeanum Maxim.). Food Chem. 2023; 423: 136305. https://doi.org/10.1016/j.foodchem.2023.136305
  • [21]Zayed A, Abdelwareth A, Mohamed TA, Fahmy HA, Porzel A, Wessjohann LA, Farag MA. Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chem. 2022; 373: 131452. https://doi.org/10.1016/j.foodchem.2021.131452
  • [22]Decker C, Krapf R, Kuballa T, Bunzel M. Nontargeted analysis of lipid extracts using 1H NMR spectroscopy combined with multivariate statistical analysis to discriminate between the animal species of raw and processed meat. J Agric Food Chem. 2022; 70(23): 7230-7239. https://doi.org/10.1021/acs.jafc.2c01871
  • [23]Rebiai A, Seghir BB, Hemmami H, Zeghoud S, Amor IB, Kouadri I, Messaoudi M, Pasdaran A, Caruso G, Sharma S, Atanassova M, Pohl P. Quality assessment of medicinal plants via chemometric exploration of quantitative NMR data: A Review. Compounds. 2022; 2(2): 163-181. https://doi.org/10.3390/compounds2020012
  • [24]Jolliffe I. A 50-year personal journey through time with principal component analysis. J Multivar Anal. 2022; 188: 104820. https://doi.org/10.1016/j.jmva.2021.104820
  • [25]Khan MSI, Islam N, Uddin J, Islam S, Nasir MK. Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J Kıng Saud Unıv-Com. 2022; 34(8): 4773-4781. https://doi.org/10.1016/j.jksuci.2021.06.003
  • [26]Singh MK, Kumar A, Nimmanapalli R, Pandey AK. Proteomics‐based milk whey proteome profiling of Indian Jersey cross‐breed cows followed by chromosomal mapping. J Sci Food Agric. 2023; 102(11): 5634-5640. https://doi.org/10.1002/jsfa.12640
  • [27]Walls FN, McGarvey DJ. Building a macrosystems ecology framework to identify links between environmental and human health: A random forest modelling approach. People Nat. 2023; 5(1): 183-197. https://doi.org/10.1002/pan3.10427
  • [28]Narvaez-Montoya C, Mahlknecht J, Torres-Martínez JA, Mora A, Bertrand G. Seawater intrusion pattern recognition supported by unsupervised learning: A systematic review and application. Sci Total Environ. 2023; 864: 160933. https://doi.org/10.1016/j.scitotenv.2022.160933
  • [29]Cornea-Cipcigan M, Pamfil D, Sisea CR, Margaoan R. Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Front Plant Sci. 2023; 14: 1100099. https://doi.org/10.3389/fpls.2023.1100099
  • [30]Das SC, Qais MN, Kuddus MR, Hasan CM. Isolation and characterization of (22E, 24S)-Stigmasta-5, 22, 25-trien-3β-ol from Clerodendrum viscosum Vent. Asian J Chem. 2013; 25(11): 6447-6448.
  • [31]Akihisa T, Tamura T, Matsumoto T, Kokke WCMC, Ghosh P, Thakur S. (22Z, 24S)-Stigmasta-5, 22, 25-trien-3β-ol and other novel sterols from Clerodendrum scandens: first report of the isolation of a cis-Δ22-unsaturated sterol from a higher plant. J Chem Soc Perkin Trans. 1. 1990; (8): 2213-2218. https://doi.org/10.1039/P19900002213
  • [32]Oscar NDY, Joel TNS, Ange AANG, Desire S, Brice SNF, Barthelemy N. Chemical constituents of Clerodendrum splendens (Lamiaceae) and their antioxidant activities. J Dis Med Plants. 2018; 4(5): 120-127. https://doi.org/10.11648/j.jdmp.20180405.11
  • [33]Lin YL, Kuo YH, Chen YL. Two new clerodane-type diterpenoids, clerodinins A and B, from Clerodendron brachyanthum Schauer. Chem Pharm Bull. 1989; 37(8): 2191-2193. https://doi.org/10.1248/cpb.37.2191
  • [34]Pandey R, Verma RK, Singh SC, Gupta MM. 4α-Methyl-24β-ethyl-5α-cholesta-14, 25-dien-3β-ol and 24β-ethylcholesta-5, 9 (11), 22E-trien-3β-ol, sterols from Clerodendrum inerme. Phytochemistry. 2003; 63(4): 415-420. https://doi.org/10.1016/S0031-9422(03)00146-8
  • [35]Panthong K, Boonsri S. Chemical constituents from the twigs and stems of Clerodendrum serratum. Burapha Sci J. 2018; 1330-1344.
  • [36]Carballelra NM, Rodriguez J. Two novel phospholipid fatty acids from the Caribbean sponge Geodia gibberosa. Lipids. 1991; 26(4): 324-326. https://doi.org/10.1007/BF02537145
  • [37]Barnathan G, Doumenq P, Njinkoué JM, Mirallès J, Debitus C, Lévi C, Komprobst JM. Sponge fatty acids. 3. Occurrence of series of n−7 monoenoic and iso‐5, 9 dienoic long‐chain fatty acids in the phospholipids of the marine sponge Cinachyrella aff. schulzei keller. Lipids. 1994; 29(4): 297. https://doi.org/10.1007/BF02536335
  • [38]Wang D, Zhang J, Li D. Hydrophobic constituents of Polygonatum odoratum rhizome from the Qinling mountains and their antisepsis activity. J Wuhan Bot Res. 2010; 28(5): 644-647.
  • [39]Carballeira NM, Pagán M, Rodríguez AD. Identification and Total synthesis of novel fatty acids from the Caribbean sponge Calyx podatypa. J Nat Prod. 1998; 61(8): 1049-1052. https://doi.org/10.1021/np9801413
  • [40]Hegde NP, Hungund BS. Isolation, identification and in vitro biological evaluation of phytochemicals from Memecylon randerianum: A medicinal plant endemic to Western Ghats of India. Nat Prod Res. 2021; 35(23): 5334-5338. https://doi.org/10.1080/14786419.2020.1756797
  • [41]Wang P, Guo F, Tan J, Huang C, Wang G, Li Y. A novel C29 sterol from Clerodendrum cyrtophyllum. Chem Nat Compd. 2012; 48: 594-596. https://doi.org/10.1007/s10600-012-0320-3
  • [42]Somwong P, Suttisri R. Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots. J Integr Med. 2018; 16(1): 57–61. https://doi.org/10.1016/j.joim.2017.12.004
  • [43]Gleason JG, Ku TW, McCarthy ME, Weichman BM, Holden D, Osborn RR, Zabko-Potapovich B, Berkowitz B, Wasserman MA. 2-nor-leukotriene analogs: antagonists of the airway and vascular smooth muscle effects of leukotriene C4, D4 and E4. Biochem Biophys Res Commun. 1983; 117(3): 732-739. https://doi.org/10.1016/0006-291X(83)91658-3
  • [44]Omoregie GO, Ovuakporie-Uvo O, Idu M. Phyto-composition and antimicrobial activities of the ethanol seed extracts of Buchholzia coriacea. Afr J Pharmacol Therapeut. 2018; 7(2): 53-58.
  • [45]Pakrashi SC, Achari B. Stigmasta-5,22,25-trien-3β-ol : a new sterol from Alangium lamarckii Thw. Tetrahedron Lett. 1971; 12(4): 365–368. https://doi.org/10.1016/S0040-4039(01)96443-3
  • [46]Ditchou YOG, Kombo CDA, Opono MTGM, Nyasse B. Antioxidant activity of the chemical constituents isolated from the roots of Albizia ferruginea (Guill. & Perr.) Benth. (Fabaceae). J Adv Chem Sci. 2019; 5(3): 646-651. https://doi.org/10.30799/jacs.212.19050301
  • [47]Rahim A, Saito Y, Miyake K, Gotodf M, Chen CH, Alam G, Morris-Natschke S, Lee KH, Nakagawa-Goto K. Kleinhospitine E and cycloartane triterpenoids from Kleinhovia hospita. J Nat Prod. 2018; 1(7): 1619-1627. https://doi.org/10.1021/acs.jnatprod.8b00211
  • [48]Yasir B, Rahim A, Lallo S, Saito Y, Goto KN, Rohman A, Alam G. Cytotoxicity activity, metabolite profiling, and ısolation compound from crude hexane extract of Cleome rutidospermae. Asian Pac J Cancer Prev. 2023; 24(10): 3345-3352. https://doi.org/10.31557/APJCP.2023.24.10.3345
  • [49]Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007; 42: 377–387. https://doi.org/10.1016/j.ymeth.2007.01.003
  • [50]Lamkanfi M, Kanneganti TD, Van Damme P, Berghe TV, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Nuénñez G. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008; 7(12): 2350-2363. https://doi.org/10.1074/mcp.M800132-MCP200
There are 50 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Budiman Yasir This is me

Muh Azwar Ar This is me

Andi Paluseri This is me

Muhammad Akmal Sukara This is me

Yohei Saito This is me

Kyoko Nakagawa-goto This is me

Muhammad Raihan This is me

Gemini Alam

Abdul Rohman This is me

Publication Date June 4, 2025
Submission Date February 16, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Yasir, B., Azwar Ar, M., Paluseri, A., Sukara, M. A., et al. (2025). Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity. Journal of Research in Pharmacy, 29(3), 971-984. https://doi.org/10.12991/jrespharm.1693824
AMA Yasir B, Azwar Ar M, Paluseri A, Sukara MA, Saito Y, Nakagawa-goto K, Raihan M, Alam G, Rohman A. Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity. J. Res. Pharm. June 2025;29(3):971-984. doi:10.12991/jrespharm.1693824
Chicago Yasir, Budiman, Muh Azwar Ar, Andi Paluseri, Muhammad Akmal Sukara, Yohei Saito, Kyoko Nakagawa-goto, Muhammad Raihan, Gemini Alam, and Abdul Rohman. “Chemometric-Assisted Fingerprinting Profiling of the Pagoda (Clerodendrum Paniculatum L.) Extract Variation Using Proton Nuclear Magnetic Resonance (1H NMR) Method, Compound Isolation, and Cytotoxic Activity”. Journal of Research in Pharmacy 29, no. 3 (June 2025): 971-84. https://doi.org/10.12991/jrespharm.1693824.
EndNote Yasir B, Azwar Ar M, Paluseri A, Sukara MA, Saito Y, Nakagawa-goto K, Raihan M, Alam G, Rohman A (June 1, 2025) Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity. Journal of Research in Pharmacy 29 3 971–984.
IEEE B. Yasir, M. Azwar Ar, A. Paluseri, M. A. Sukara, Y. Saito, K. Nakagawa-goto, M. Raihan, G. Alam, and A. Rohman, “Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity”, J. Res. Pharm., vol. 29, no. 3, pp. 971–984, 2025, doi: 10.12991/jrespharm.1693824.
ISNAD Yasir, Budiman et al. “Chemometric-Assisted Fingerprinting Profiling of the Pagoda (Clerodendrum Paniculatum L.) Extract Variation Using Proton Nuclear Magnetic Resonance (1H NMR) Method, Compound Isolation, and Cytotoxic Activity”. Journal of Research in Pharmacy 29/3 (June 2025), 971-984. https://doi.org/10.12991/jrespharm.1693824.
JAMA Yasir B, Azwar Ar M, Paluseri A, Sukara MA, Saito Y, Nakagawa-goto K, Raihan M, Alam G, Rohman A. Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity. J. Res. Pharm. 2025;29:971–984.
MLA Yasir, Budiman et al. “Chemometric-Assisted Fingerprinting Profiling of the Pagoda (Clerodendrum Paniculatum L.) Extract Variation Using Proton Nuclear Magnetic Resonance (1H NMR) Method, Compound Isolation, and Cytotoxic Activity”. Journal of Research in Pharmacy, vol. 29, no. 3, 2025, pp. 971-84, doi:10.12991/jrespharm.1693824.
Vancouver Yasir B, Azwar Ar M, Paluseri A, Sukara MA, Saito Y, Nakagawa-goto K, Raihan M, Alam G, Rohman A. Chemometric-assisted fingerprinting profiling of the Pagoda (Clerodendrum paniculatum L.) extract variation using proton nuclear magnetic resonance (1H NMR) method, compound isolation, and cytotoxic activity. J. Res. Pharm. 2025;29(3):971-84.
OSZAR »