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Abstract 

Systems involving interactive actors such as food networks, scientific quotations, social networks, communications networks, the Internet and stock 
exchange networks have long been studied by many researchers under the concept of complex systems. Such systems are represented by weighted 
networks. The intensive connections and relationships between actors play a crucial role in forecasting or risk analysis. In this study; we propose a new 
approach to measure the hierarchical structure of the globally active stock market network. In this approach we propose, the relationship of 21 different 
world stock exchange markets to each other is determined by Pearson's correlations. Relevant stock network is based on a certain threshold value. At the 
same time, a new topological measure is used to characterize the interaction of the nodes of the graphical communities of the stock market, and this 
measure is examined for the time periods of 2008 global economic crisis. 
Keywords: Correlation Networks, Network Construction, Minimum Spanning Tree, Topological Measure 

BORSA AĞLARININ TOPLULUKLARI İÇİN YENİ BİR TOPOLOJİK ÖLÇÜM  

Öz 

Gıda ağları, bilimsel alıntılar, sosyal ağlar, haberleşme ağları, Internet ve borsa ağları gibi interaktif aktörleri içeren sistemler, karmaşık sistemlerin 
içeriği kapsamı altında pek çok araştırmacı tarafından incelenmiştir. Bu tür sistemler ağırlıklı ağlar tarafından temsil edilir. Aktörler arasındaki yoğun 
bağlantılar ve ilişkiler, tahmin veya risk analizinde önemli bir rol oynamaktadır. Bu çalışmada, aktif küresel borsa ağının hiyerarşik yapısını ölçmek için 
yeni bir yaklaşım önerilmiştir. Önerdiğimiz bu yaklaşımda, 21 farklı dünya borsa piyasalarının birbirleriyle ilişkisi Pearson ilişkileri tarafından 
belirlenmektedir. İlgili hisse senedi ağı belli bir eşik değerine dayanmaktadır. Aynı zamanda, borsa graf topluluklarının tepelerinin etkileşimini 
karakterize etmek için yeni bir topolojik ölçüm kullanılmaktadır ve bu ölçü 2008 yılı küresel ekonomik krizin zaman dilimleri için incelenmektedir. 
Anahtar Kelimeler: Korelasyon Ağları, Ağ Yapılandırması, Minimum Geren Ağaç, Topolojik Ölçüm 

 

1 Introduction 

As individuals, we are a unit of different types of social 
networks and biochemical reactions as biological systems. 
Networks can be nested objects in the Euclidean space, such as 
electric power grids, the Internet, highways, public transport 
systems and artificial neural networks, or they can be described 
as the structure of acquaintance or partnership between 
individuals in an abstract space as complex systems. Complex 
systems are natural or social systems involving many nonlinear 
associative actors. The necessity of making sense of the 
phenomena in these systems has led many researchers to use 
the new models and use the complex system tools used in other 
branches. The most interesting feature of these systems is the 
existence of phenomena that cannot be obtained in a simple 
way or that cannot be clearly predicted from the structure of 
the system and from the individual interaction of the actors. 
Mathematical methods have shown that complex systems are 
effective in proving the existence of coexistence features such 
as noisy sampling effects, long-term relationships, determinism 
and flexibility in data evolution, scalability, and criticality 
[13,21].  

Graph theory emerges as a powerful mathematical tool to 
represent complex systems. Graph theoretical approaches are 
efficient to determine several characteristics of the complex 
systems such as the long-term relationships [24], the noise in 

the data [7], the relationship between inevitability and 
flexibility in evolution [14], and the criticality [17].  

In this study, we analyze the correlation network of globally 
operating stock exchange markets through the 2008 global 
economic crisis. To study granular structure of the networks, 
we focus our method to the Minimum Spanning Tree (MST) 
structures in the clusters of vertices. To construct the graph 
representation of the network, we determine edges by the 
correlation distance based on Pearson Correlation Coefficient 
of the logarithmic returns of the closure prices. Beside the well-
known topological measures of MSTs, we propose a new 
topological measure based on the vertices in MST. In Section 2, 
we give basic definitions and theorems on graph theory. In 
Section 3, we present the methods we used. For the vertex 
clusters, we used graph communities with high modularity 
method. The details of the new topological measure we present 
are studied with certain bounds. The data and the network 
construction method are also presented in Section 3. In Section 
4, we present detailed results that we obtain and in Section 5 
we give the discussion. 

2 Preliminaries 

In this section, we give some preliminary definitions and 
theorems for the graphs. More details can be found in [5,11,25]. 

Graphs are the representation of a relation defined on discrete 
set of objects. A graph 𝐺 is denoted by the tuple 𝐺 = (𝑉, 𝐸) 
where 𝑉 = {𝑣1, … , 𝑣𝑛} is the set of vertices and 𝐸 is the set of 

https://orcid.org/0000-0002-7061-2534
https://orcid.org/0000-0003-1444-6583
https://orcid.org/0000-0003-1465-7153
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edges with the elements 𝑒𝑘 = (𝑣𝑖 , 𝑣𝑗). Throughout this study, 

we only consider finite simple and undirected graphs which 
means we assume |𝑉| = 𝑛, the relation is symmetric, there is no 
𝑒𝑘 ∈ 𝐸 such that 𝑒𝑘 = (𝑣𝑖 , 𝑣𝑖). 

An ordered sequence of the vertices and edges 
𝑣0, 𝑒1, 𝑣1, … , 𝑣𝑛−1𝑒𝑘𝑣𝑛is called a walk, and the number of the 
edges in a walk is the length of that walk. If the vertices and 
edges of a walk are all distinct, then we this walk is called path. 
If there is at least one path between all vertices in a graph, then 
𝐺 is called a connected graph. If a path has the same vertex at 
the endpoints, this path is called a cycle. The cycle with 
minimum number of edges is called girth of a graph. 

The degree of a vertex is the number of the adjacent vertices to 
that vertex and we denote it by 𝑑𝑒𝑔(𝑣𝑖). If 𝑑𝑒𝑔(𝑣𝑖) = 0, then 𝑣𝑖  
is called an isolated vertex. If 𝑑𝑒𝑔(𝑣𝑖) = 𝑁 − 1 for all 𝑣𝑖 ∈ 𝑉, 
then 𝐺 = (𝑉, 𝐸) is called complete graph. 

For 𝑉′ ⊂ 𝑉 and 𝐸′ ⊂ 𝐸, the graph 𝐺′ = (𝑉′, 𝐸′) is called a 
subgraph of 𝐺 = (𝑉, 𝐸). If 𝑉 = 𝑉′, then 𝐺′ is called a spanning 
graph of 𝐺. A spanning tree with minimum edge weights is 
called minimum spanning tree (MST).  

From the linear algebraic point of view, a graph 𝐺 = (𝑉, 𝐸) can 
be represented with some matrices. A matrix 𝐴𝐺 = [𝑎𝑖𝑗] whose 

entities are 

𝑎𝑖𝑗 = {
1 ,   𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

called the adjacency matrix of 𝐺. The diagonal matrix 𝐷𝐺 =
𝑑𝑖𝑎𝑔[deg (𝑣𝑖)] is called the degree matrix of 𝐺. The matrix 

𝐿𝐺 = 𝐷𝐺 − 𝐴𝐺  

is called the Laplacian matrix of 𝐺.  

The spectrum of 𝐿𝐺  tells us some structural characterizations of 
𝐺 as stated in the following theorems. 

Theorem 2.1[8]Let 𝐿𝐺  be the Laplacian matrix of 𝐺. The 𝑘 
multiplicity of the 0 eigenvalue of  𝐿𝐺  is equal to the number of 
components of 𝐺. 

Theorem 2.2 [8]Let 𝐿𝐺  be the Laplacian matrix of 𝐺. Let 
𝜆1, 𝜆2, … , 𝜆𝑛−1 be the non-zero eigenvalues of 𝐿𝐺 . Then, the 
number of distinct spanning trees of 𝐺 is equal to 

𝑡(𝐺) =
1

𝑛
∏ 𝜆𝑖

𝑛−1

𝑖=1

. 

3 Method 

In this section, we present the method we use to analyze 
hierarchical structures of the communities of the stock market 
network of globally operating stock markets.  

Graph communities are the cluster of vertices which are 
connected densely. There are several methods to determine the 
community structure of a network. These methods can be 
summarized as Minimum-cut method [18, 19], Hierarchical 
clustering [16], Girvan-Newman algorithm [20], High 
modularity [1], and Clique based methods [9,10]. 

In this study, we use the high modularity method to determine 
graph communities. High modularity is a maximization 
problem respect to  

𝒬 =
1

2𝑚
∑ (𝑎𝑖𝑗 −

deg (𝑣𝑖)deg (𝑣𝑗)

2m
) 𝑠𝑖𝑠𝑗

𝑣𝑖,𝑣𝑗

, 𝑓𝑜𝑟 𝑚 = |𝐸| 

modularity of the edges in a graph. This maximization problem 
is solved via the linear programming method proposed in [1]. 

3.1 Topological Measures 

For the characterization of the MSTs in stock market networks, 
several topological measures are proposed. For the sake of 

simplicity, we denote vertices with their indices in the rest of 
the paper. 

The mean correlation measure based on 𝑁 × 𝑁 correlation 
distance matrix 𝐷 = [𝑑𝑖𝑗] is defined as 

𝐿𝑀𝐶𝑀 =
2

𝑁(𝑁 − 1)
∑ ∑ 𝑑𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

, 

where 𝑁 is the number of nodes in MST. 

Another measure to study the property in the MST is 
normalized tree length is defined as 

𝐿𝑁𝑇𝐿 =
1

𝑁 − 1
∑ 𝑑𝑖𝑗 ,

𝑑𝑖𝑗∈Ω

 

where Ω is the set of edges, and 𝑁 −  1 denotes the number of 
edges present in the MST [15,23]. 

Characteristic path length is used to quantify the average 
minimal route between pairs of nodes. For an unweighted MST 
it is defined by 

𝐿𝐶𝑃𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑙𝑖𝑗

𝑖,𝑗:𝑖≠𝑗

, 

where 𝑙𝑖𝑗 is the number of edges in the shortest path between 

nodes 𝑖 and 𝑗 [6]. 

The mean occupation layer is the measurement of the change in 
the density of the MST. With the central node 𝑣𝑐 whose level is 
taken as zero, the mean occupation layer is defined as 

𝐿𝑀𝑂𝐿 =
1

𝑁
∑ 𝑙𝑒𝑣(𝑣𝑖),

𝑁

𝑖=1

 

where 𝑙𝑒𝑣(𝑣𝑖) denotes the level of node 𝑣𝑖  with respect to 𝑣𝑐 
[22]. 

These measures are mainly depended on the edge weights. 
Beside the edge weight based measures, it is also possible to 
measure topological structure of MSTs with a method 
depended on the vertices: 

Definition 3.1 The solitude number of a graph 𝐺 = (𝑉, 𝐸) is 
defined as 

𝑆(𝐺) =
∑ ∑ 𝑖𝑠𝑜(𝐺)𝑁

𝑗=1
𝑁
𝑖=1

2𝑀
, 

where |𝑉| = 𝑁, |𝐸| = 𝑀, and 𝑖𝑠𝑜(𝐺) is the number of isolated 
vertices at the subgraph 𝐺′ = (𝑉 − {𝑖, 𝑗}, 𝐸′). 

The definition of the solitude number of a graph first proposed 
in [12] and several bounds for the different graph classes are 
studied.  

In this study, we determine lower and upper bounds for the 
MSTs: 

Lemma 3.2 Let 𝐺 = (𝑉, 𝐸) be the graph with girth 𝑔 ≤ 10. Then 

there exists a spanning tree with at least 
𝑔−2

2𝑔−2
(𝑁 − 2) + 2 

leaves. Besides, the number of leaves cannot exceed 
7

16
𝑁 +

1

2
. 

For the proof of Lemma 3.2 and detailed discussion we refer 
readers to [4]. 

Theorem 3.3 Let 𝐺′ = (𝑉, 𝐸′) be the MST of a graph 𝐺 = (𝑉, 𝐸) 
with girth 𝑔 ≤ 10. Then  

𝑔 − 2

2𝑔 − 2
(𝑁 − 2) + 2 ≤ 𝑆(𝐺′) ≤

7

16
𝑁 +

1

2
. 

Proof.In MSTs, the solitude number is directly equal to the 
number of leaves. That is, when the junction vertex removed, 

we directly add 𝑆(𝐺′) with 
𝑙𝑖

2𝑀
 up, where 𝑙𝑖  is the number of 

leaves adjacent to the junction 𝑖. Hence the bounds are directly 
obtained by using Lemma 3.2. This concludes the proof. □ 
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3.2 Data and Network Construction 

In this study, a financial network of globally operating stock 
markets are modelled by a simple undirected graph G = (V, E), 
where V is the set of stock markets and E are the edges 
determined by the Pearson Correlation amongst the markets of 
Holland (AEX), All Ordinaries (AORD), Austria (ATX), Belgium 
(BFX), India (BSESN), Brazil (BVSP), France (FCHI), Germany 
(GDAXI), USA (GSPC) and(GSPTSE), Hong Kong (HIS), Indonesia 
(JKSE), Malaysia (KLSE), South Korea (KS11), 
Argentina(MERV), Mexica (MXX), Japan (N225), New Zeeland 
(NZ50), Spain (SMSI), Singapore (STI), and Taiwan (TWII). 

The data we used is obtained from the daily logarithmic return 
of the closure price of each market between the dates from 
01.01.2005 to 31.12.2014 as including the global economic 
crisis. To show the efficiency, we divide scale of our analysis 
into three subintervals of pre-crisis 01.01.2005-31.12.2007, 
crisis 01.01.2008-31.12.2011, and post-crisis 01.01.2012-
31.12.2014.  

For the daily closure price 𝐶𝑙𝑖  of the 𝑖-th stock exchange market, 
the daily logarithmic return 𝑅𝑖 is calculated as 

𝑅𝑖 = log 𝐶𝑙𝑖+1 − log 𝐶𝑙𝑖 . 

The relation between the logarithmic return of the closure 
prices can be determined by the Pearson Correlation 
Coefficient 

𝜌𝑖𝑗 =
< 𝑅𝑖𝑅𝑗 > −< 𝑅𝑖 >< 𝑅𝑗 >

√(< 𝑅𝑖
2 > −< 𝑅𝑖 >2)(< 𝑅𝐽

2 > −< 𝑅𝑗 >2)

, 

where < . . > is a temporal average performed on the trading 
days. It is well known that 𝜌𝑖𝑗 varies between −1 and 1, that is, 

𝜌𝑖𝑗 = −1indicates the maximum negative correlation while 

𝜌𝑖𝑗 = 1 indicates the maximum positive correlation. To avoid 

negative weights on edges, we introduce a distance based on 𝜌𝑖𝑗 

by 𝑑𝐶𝑜𝑟𝑟(𝑖, 𝑗) =
√2(1 − 𝜌𝑖𝑗)

2
⁄ . 

Since 𝜌𝑖𝑗 varies between −1 and 1, it is straightforward to see 

that 𝑑𝐶𝑜𝑟𝑟(𝑖, 𝑗) varies 0 and 1. 

For the network construction, we follow the threshold method 
for correlation networks presented in [2,3]. 

With the empirically chosen threshold value 𝑇ℎ𝑉, we form 
edges by following the formation rule 

(𝑖, 𝑗) ∈ 𝐸 𝒊𝒇𝒇 𝑑𝐶𝑜𝑟𝑟(𝑖, 𝑗) ≤ 𝑇ℎ𝑉. 

Initially we start by a complete graph by choosing 𝑇ℎ𝑉 = 1. 
Then, we decrease 𝑇ℎ𝑉 by 1/ℎ, and repeat the formation rule. 
At certain point between 0 and 1, there is a 𝑇ℎ𝑉 such that graph 
becomes with two components. That is, we choose the 
empirical threshold value which makes graph with one 
component and optimally many edges. To control the number 
of connected components we use Theorem 2.1. For the 
computational complexity, we refer [3] and for the disparity 
measure of the networks constructed via this threshold value, 
we refer [2].  

In Figures 1-3, we present the matrices of 𝑑𝐶𝑜𝑟𝑟 values of pre-
crisis, crisis, and post-crisis periods with vertices numbered as 
the alphabetical order of stock exchange market tickers. Ticks 
in the each axes represents the vertex number. 

 
Figure 1. The matrix of 𝒅𝑪𝒐𝒓𝒓 values in pre-crisis period 

 
Figure 2. The matrix of 𝒅𝑪𝒐𝒓𝒓 values in crisis period 

 
Figure 3. The matrix of 𝒅𝑪𝒐𝒓𝒓 values in post-crisis period. 

4 Results 

E For ℎ = 10000, the threshold values are obtained as 0.6971 
for pre-crisis period, 0.6933 for crisis period, and 0.6939 for 
post-crisis period. Resulting networks and community 
structures on them are presented in Figures 4-6. 
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Figure 4. The resulting network in pre-crisis period. The graph 
communities are represented with different colors. 

 
Figure 5. The resulting network in crisis period. The graph 
communities are represented with different colors. 

 

 
Figure 6. The resulting network in post-crisis period. The graph 
communities are represented with different colors. 

 

In the pre-crisis period the network has 4 communities, in the 
crisis period the network has 5 communities and in the post-
crisis period the network has 6 communities. 

To determine hierarchical structure in communities, we 
construct complete graphs with edge lengths determined by 
𝑑𝐶𝑜𝑟𝑟. The MSTs in each community represent the hierarchies.  
In Figures 7-9, we represent MSTs in each community. 

 
 

 

 

 

Figure 7. MSTs of communities in pre-crisis period 
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Figure 8. MSTs of communities in crisis period 

 
Figure 9. MSTs of communities in post-crisis period 

 

Structural changes in the hierarchies in communities can be 
seen in the figures. However, these structural changes are not 
enough to characterize the impacts of the global economic 
crisis. Therefore, the computational results of the topological 
measures are presented in Table 1-3.   

Table 1. Topological measures for pre-crisis period 

 Communities  

Measure 1 2 3 4 Mean 

𝐿𝑀𝐶𝑀 0.22 0.23 0.23 0.46 0.286 

𝐿𝑁𝑇𝐿 1.37 1.38 1.37 1.38 1.375 

𝐿𝐶𝑃𝐿 1.92 3.76 5.56 28.8 10.01 

𝑆(𝐺′) 0.93 0.8 0.93 1 0.916 

 

Table 2. Topological measures for crisis period 

 Communities  

Measure 1 2 3 4 5 Mean 

𝐿𝑀𝐶𝑀 0.23 0.27 0.34 0.46 0.46 0.352 

𝐿𝑁𝑇𝐿 1.37 1.37 1.37 1.37 1.38 1.373 

𝐿𝐶𝑃𝐿 1.92 4.39 8.48 17.8 18.62 10.24 

𝑆(𝐺′) 0.933 1 1 1 1 0.986 

 

Table 3. Topological measures for post-crisis period 

 Communities  

Measure 1 2 3 4 5 6 Mean 

𝐿𝑀𝐶𝑀 0.27 0.27 0.34 0.46 0.69 0.69 0.45 

𝐿𝑁𝑇𝐿 1.37 1.38 1.37 1.38 1.39 1.38 1.378 

𝐿𝐶𝑃𝐿 1.57 3.07 6.28 13.4 40.1 41.2 17.7 

𝑆(𝐺′) 1 0.9 1 1 0 0 0.65 

5 Discussion 
Correlation network of stock exchange markets emerge as a 

powerful concept to study financial actors. In this study, the 

relationship of 21 different world stock exchange markets to 

each other is determined by Pearson's correlations. Then, we 

analyze hierarchies in the communities of each network 

through pre-crisis to post-crisis periods. 

The economic crisis that took place in 2008 has caused 

radical changes in country behavior. The relationship 

between the country's stock exchanges is changing with the 

crisis period. For example; The ATX Austrian stock 

exchange is in direct contact with three stock exchanges, 

namely GDAXI, HSI and KLSE stock exchanges, and 

indirectly AEX, NZ50 stock exchanges. During the crisis 

period, ATX is in direct contact with the GDAXI and is 

indirectly involved with the GSPTSE and the KLSE stock 

exchanges, in total, with 3 exchanges. In the post-crisis 

period, it is only in involved with SMSI stock exchange. 

Therefore, Austria is among the countries most affected by 

the crisis.  

The topological changes during the crisis are also studied in 

this paper. Beside the edge based measures such as 𝐿𝑀𝐶𝑀, 

𝐿𝑁𝑇𝐿, 𝐿𝐶𝑃𝐿, the new measure we present in this paper has a 

significant change in post-crisis era to indicate the structural 

changes in the communities. Hence, we may conclude that 
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the solitude measure is an efficient tool to characterize 

topological changes. 
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