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Öz

Bilgi çağı olan günümüzde veri, özellikle teknolojinin hızla ilerlemesiyle birçok alanda kritik bir kaynak hâline gelmiştir. Veri doğru bir 
şekilde toplandığında, düzenlendiğinde ve analiz edildiğinde birçok sektörde etkili kararlar almak, süreçleri iyileştirmek ve başarı elde 
etmek için güçlü bir araç hâline gelir. Gerçek verinin kısıtlılığı, etiketlenmiş verinin elde edilmesinin maliyetli olması, bazı durumlarda 
ve alanlarda gizlilik ve güvenlik endişeleri gibi sebepler sentetik verilere ihtiyaç duyulmasına sebep olmuştur. Sentetik veriler, özellikle 
sağlık alanında hassaslık ve gizlilik endişeleri, yasal düzenlemeler, etik ve güvenliğin sağlanmaya çalışılması gibi nedenlerden dolayı 
önemli bir araçtır. Sentetik veri üretme amacıyla Derin Öğrenme (DÖ) modeli olan ÇÜA (Çekişmeli Üretici Ağlar) ortaya çıkmıştır. 
Bu çalışmada Meme Histopatoloji veri seti kullanılarak bir ÇÜA çeşidi olan ÇÖD-ÇÜA (Üretken Rekabetçi Ağlar için Çok Ölçekli 
Değişimler) ile kanser tespitinde yarar sağlamak amacıyla kötü huylu ve iyi huylu etiketli sentetik yama görselleri oluşturulmuştur. 
Sonrasında gerçek ve sentetik veriler ResNet18 modeli kullanılarak Aktarımlı Öğrenme ile dört farklı şekilde sınıflandırılmıştır. İlk 
sınıflandırmada gerçek veriler eğitim ve test verisi olarak kullanılıp %84 doğruluk oranı, ikinci sınıflandırmada sentetik veriler eğitim ve 
test verisi olarak kullanılıp %99 doğruluk oranı, üçüncü sınıflandırmada gerçek veriler eğitim, sentetik veriler test verisi olarak kullanılıp 
%81 doğruluk oranı, dördüncü sınıflandırmada sentetik veriler eğitim, gerçek veriler test verisi olarak kullanılıp %76 doğruluk oranı 
elde edilmiştir. Çalışma sonucunda dört farklı sınıflandırma ilişkilendirilerek sentetik görüntülerin orijinal verilere olan benzerliği ve 
gerçek veri gibi davranıp davranmadığı tespit edilmeye çalışılmıştır.

Anahtar Kelimeler: Çekişmeli üretici ağlar, histopatoloji, ÇÖD-ÇÜA, ResNet18, sentetik veri.

Abstract

Since technology is advancing so quickly in the modern era of information, data is becoming an essential resource in many fields. 
Correct data collection, organization, and analysis make it a potent tool for successful decision-making, process improvement, and 
success across a wide range of sectors. Synthetic data is required for a number of reasons, including the constraints of real data, the 
expense of collecting labeled data, and privacy and security problems in specific situations and domains. For a variety of reasons, 
including security, ethics, legal restrictions, sensitivity and privacy issues, and ethics, synthetic data is a valuable tool, particularly in the 
health sector. A Deep Learning (DL) model called GAN (Generative Adversarial Networks) has been developed with the intention 
of generating synthetic data. In this study, the Breast Histopathology dataset was used to generate malignant and benign labeled 
synthetic patch images using MSG-GAN (Multi-Scale Gradients for Generative Adversarial Networks), a form of GAN, to aid 
in cancer identification. After that, real and synthetic data were classified in four different ways with Transfer Learning (TL) using 
the ResNet18 model. In the first classification, real data is used as training and test data and an accuracy rate of 84%, in the second 
classification, synthetic data is used as training and test data and the accuracy rate is 99%, in the third classification, real data is used as 
training and synthetic data is used as test data and an accuracy rate of 81%, in the fourth classification, synthetic data is used as training 
and real data is used as test data and an accuracy rate of 76%. As a result of the study, four different classifications were associated and 
it was tried to determine whether the synthetic images are similar to the original data and whether they behave like real data. 

Keywords: Generative adversarial networks, histopathology, MSG-GAN, ResNet18, synthetic data.
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1. Introduction
In today’s world, data has become an extremely important 
resource in many fields, akin to a valuable commodity. The 
usability of data in numerous areas has led to the emergence 
of new data and an increased need for more data. Fields 
such as scientific research, decision-making processes, stra-
tegic planning, performance monitoring, Artificial Intelli-
gence (AI) and Machine Learning (ML), customer experi-
ence and personalization, scientific research and innovation, 
healthcare services and medicine, security and risk manage-
ment, solving societal issues, and marketing demonstrate 
the significance of data.

Data plays many important roles in the field of healthcare 
and medicine, contributing significantly to the development 
of healthcare services, patient treatment, and the formation 
of health policies. However, there are limitations to 
accessing real data in healthcare. Health data often contains 
sensitive and confidential information. The sharing and 
access of medical data are subject to strict regulations and 
can be limited due to privacy concerns, ethics, and security. 
Examples of legal regulations governing health data include 
HIPAA (Health Insurance Portability and Accountability 
Act) in the United States, GDPR (General Data Protection 
Regulation) in the European Union, and various other 
regulations in different countries related to the protection 
and processing of health data. Furthermore, health data 
is protected under medical ethical rules and standards. 
These principles address issues such as data confidentiality, 
patient privacy, and patient rights, guiding healthcare 
providers. Therefore, healthcare institutions and providers 
must strictly adhere to these regulations and take various 
measures to ensure the confidentiality and security of health 
data, ensuring patient safety and preventing data misuse. 
Overcoming limitations in accessing data is crucial for 
health research and innovations.

Overcoming limitations and addressing data scarcity, 
synthetic data generated by AI presents a significant 
solution. Synthetic data, created artificially by a computer 
program, is designed to mimic the characteristics of real-
world data while preserving individual privacy and avoiding 
data breaches. Organizations can generate nearly unlimited 
amounts of data for testing, research, and analysis using 
synthetic data without worrying about ethical and legal 
issues associated with real-world data. Synthetic data, 
generated through advanced algorithms and models, offers 
a viable solution to these challenges by creating artificial 
datasets that mimic the statistical properties of real-world 
data. This enables researchers to augment existing datasets, 

perform robust experiments, and train ML models more 
effectively (Goodfellow et al. 2014).

Generative Adversarial Networks (GANs) have emerged for 
the purpose of synthetic data generation. GANs, introduced 
by Goodfellow et al. in 2014, consist of two neural networks-a 
generator and a discriminator-that compete against each 
other to produce realistic data samples. This adversarial 
training process results in highly realistic synthetic data 
that can be used in various applications, including image 
classification, natural language processing, and anomaly 
detection (Goodfellow et al. 2014). Recent advancements in 
GANs have led to the development of more sophisticated 
models, such as StyleGAN and CycleGAN, which further 
enhance the quality and diversity of synthetic data (Karras 
et al. 2019, Zhu et al. 2017).

GANs are a significant and innovative modeling approach 
in the field of  DL. They consist of two networks, a generator 
and a discriminator, which compete with each other. These 
networks compete to ultimately produce realistic images. 
For example, GAN-generated medical images have been 
used to improve the accuracy of diagnostic models and to 
train models on rare diseases where real data is scarce (Frid-
Adar et al. 2018, Salehinejad et al. 2018). Various types of 
GAN model variants have been developed to meet different 
needs. This article will describe Multi-Scale Gradients for 
Generative Adversarial Networks (MSG-GAN), a type of 
GAN model.

In MSG-GAN, the generator and discriminator networks 
compete at a single resolution and improve together. The 
MSG technique utilizes different resolution levels to 
stabilize this competition. This approach gradually increases 
operations starting from lower resolutions and scales up to 
real dimensions. This innovation addresses common issues in 
GAN training, such as mode collapse and training instability, 
leading to more robust synthetic data generation (Karnewar 
et al. 2019). As a result, a faster, more stable, and improved 
training process is provided, contributing to more realistic, 
consistent, and high-quality results by better utilizing 
information at different scales. MSG-GAN introduces a 
multi-scale gradient approach that enables the generator 
to produce high-resolution images with finer details by 
receiving gradients at multiple scales during the training 
process. MSG-GAN is particularly successful in tasks such 
as image generation and synthesis involving visual datasets. 
It has a wide range of applications in data augmentation, AI 
studies, art, computing, medicine, automotive, finance, and 
many other fields.
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After synthetic data generation with MSG-GAN, the gen-
erated synthetic data will be classified using TL techniques 
such as ResNet18 (Residual Neural Network). ResNet18 
is a DL model commonly used for visual recognition and 
classification problems. The term “ResNet” stands for “Re-
sidual Networks,” and “18” denotes the number of layers in 
the model.

ResNet represents an architecture that includes residual 
blocks developed to facilitate the training of deep neural 
networks and reduce overfitting. The residual block passes 
the input data through an activation function and several 
convolutional and summation layers. An important feature 
of ResNet is the presence of “residual connections” in these 
blocks.

TL refers to the reuse of features learned by a pre-trained 
model to solve a different task. If necessary, weights are 
adjusted and new layers are added based on the new task 
and dataset. For example, a pre-trained ResNet18 model 
may have been trained for many image classification tasks. 
In a new image classification task, the pre-trained ResNet18 
model can be taken and retrained on the new dataset.

Breast cancer is the second most common cancer type 
globally after lung cancer (Teh et al. 2015). Invasive Ductal 
Carcinoma (IDC) is the most common subtype among all 
breast cancers. The aim is to reduce reliance on pathologists 
and thereby reduce errors and human-related biases during 
disease detection, as well as minimize the high economic 
cost and time loss associated with it. In this study, IDC+ 
and IDC- histopathological images will be generated using 
MSG-GAN for disease detection, and the images will be 
classified using ResNet18.

2. Material and Methods
In the two-stage study, in the first stage, synthetic images 
were produced using MSG-GAN, and in the second stage, 
classification was made using ResNet18, one of the TL 
techniques. Finally, the classification results were evaluated 
with metrics.

2.1. MSG-GAN (Multi-Scale Gradients Generative 
Adversarial Network)

MSG-GAN (Karnewar et al. 2019), is a technique used to 
enhance the performance of traditional GANs (Goodfellow 
et al. 2014) by stabilizing their training process and achieving 
high-quality results. 

The MSG technique uses different resolution levels 
(starting from lower to higher resolutions) to stabilize this 
competition. This approach begins with lower resolutions 
and gradually scales up operations to the actual size. This 
ensures a faster, more stable, and improved training process, 
leveraging information at different scales to produce more 
realistic, consistent, and high-quality results.

The process generally involves the following steps:	

•	 Start at Low Resolution: Initially, the generator network 
operates at a lower resolution, learning simpler patterns.

•	 Increase Resolution: As the generated images are scaled 
to higher resolutions, the complexity of the network 
increases, adding more detail and realism.

•	 Finalize at Real Size: The process continues until the 
target resolution is reached, allowing the network to 
learn more complex patterns and details.

This technique is considered a significant advancement in 
the evolution of GANs, often leading to better performance 
on high-resolution images or other complex data types. 
MSG-GAN is utilized in various image synthesis and other 
application areas.

Figure 1 shows the basic MSG-GAN architecture used in 
the study. The architecture includes connections from the 
intermediate layers of the generator to the intermediate 
layers of the discriminator. The multi-scale images sent to 
the discriminator are combined with activation volumes 
obtained from the main path of the convolutional layers 
using a “Combine Function” (shown in yellow) (Karnewar 
et al. 2019).

2.1.1. MSG-GAN Generator Architecture and Function

The generator architecture used to produce a 64x64x3 image 
with MSG-GAN typically consists of 5 blocks. While 
Table 1, illustrates the entire generator architecture, the 5 
blocks used to generate 64x64x3 images in the study are 
highlighted in bold.

The generator architecture generally involves upsampling 
and convolutional operations. Upsampling refers to 
transforming images into higher resolutions. After each 
upsampling step, two convolution operations are usually 
performed. The generator processes input noise to generate 
realistic images with dimensions of 64x64x3.

The generator typically takes random noise vectors as input. 
This noise is processed and transformed into a feature map 
containing pixel values. After upsampling the images, the 
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images of size 64x64x3 in five blocks and transmits them to 
the discriminator.

The generator is trained using feedback from the discrim-
inator. The discriminator evaluates the realism of the gen-
erated images and provides feedback. The generator learns 
to make the generated images increasingly realistic based 
on this feedback. During the training process, the generated 
images are optimized to resemble real images as closely as 
possible. This helps prevent issues such as mode collapse and 
training instability

2.1.2. MSG-GAN Discriminator Architecture and Function

The discriminator architecture used to generate a 64x64x3 
image with MSG-GAN typically consists of 5 blocks. Table 
2 displays the entire discriminator architecture, with the 
5 blocks highlighted in bold for generating the 64x64x3 
images in the study. The 5 blocks used in the discriminator 
architecture are the last 5 blocks compared to the first 5 
blocks used in the generator architecture. This is because, 
as described below, the output of each block from the 
generator will be the input to the corresponding blocks of 
the discriminator from end to start.

generator typically learns features using convolutional layers 
with 3x3 filters. Higher-level features are learned at each 
layer. Initially, these features may represent simple patterns 
and shapes, which later evolve into more complex objects 
and structures. The LeakyReLU activation function (Xu et 
al. 2015) is used in each block.

The generator performs two transmission operations in each 
block:	

•	 Firstly, after every second convolution operation, the 
generator passes its output to the next block until 
reaching the final block. The output size, for example, is 
512x16x16.

•	 Secondly, in addition to Table 1, a 1x1 convolution 
operation is applied to the output of the respective block 
before transitioning to the next block. This ensures that 
the block output has 3 channels (RGB features). This 
output is transmitted as input to the discriminator. The 
output size, for example, is 3x16x16.

By following the specified steps and performing the 1x1 
convolution operation, the generator produces high-quality 

Figure 1. MSG-GAN architecture.
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The discriminator model is structured to handle images 
of different sizes in each block. Each block in Table 2 
represents a different scale level. Block operations typically 
involve taking the raw RGB image, concatenating it with 
feature maps from previous blocks (Concat/ϕ_simple), 
adding minibatch standard deviation (MiniBatchStd) to 
the feature maps, applying a 3x3 convolution operation 
(a 3x4 convolution operation is applied in the last block), 
and performing average pooling (Avg Pooling). Each 
convolution layer uses a certain number of filters, and the 
LeakyReLU activation function (Xu et al. 2015) is used.

Table 1. Generator architecture.

Block Operation Activation 
Function Output Shape

1.
Latent vector

Conv 4x4
Conv 3x3

Norm
LReLU
LReLU

512x1x1
512x4x4
512x4x4

2.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

512x8x8
512x8x8
512x8x8

3.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

512x16x16
512x16x16
512x16x16

4.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

512x32x32
512x32x32
512x32x32

Model 1 ↑

5.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

512x64x64
256x64x64
256x64x64

6.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

256x128x128
128x128x128
128x128x128

Model 2 ↑

7.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

128x256x256
64x256x256
64x256x256

Model 3 ↑

8.
Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

64x512x512
32x512x512
32x512x512

9.

Upsample
Conv 3x3
Conv 3x3

-
LReLU
LReLU

32x1024x1024
16x1024x1024
16x1024x1024

Model full ↑

Table 2. Discriminator architecture.

Block Operation Activation 
Function Output Shape

Model full ↓

1.

Raw RGB images 0
FromRGB 0

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x1024x1024
16x1024x1024
17x1024x1024
16x1024x1024
32x1024x1024
32x512x512

2.

Raw RGB images 1
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x512x512
35x512x512
36x512x512
32x512x512
64x512x512
64x256x256

Model 3 ↓

3.

Raw RGB images 2
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x256x256
67x256x256
68x256x256
64x256x256
128x256x256
128x128x128

Model 2 ↓

4.

Raw RGB images 3
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x128x128
131x128x128
132x128x128
128x128x128
256x128x128
256x64x64

5.

Raw RGB images 4
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x64x64
259x64x64
260x64x64
256x64x64
512x64x64
512x32x32

In the last block, average pooling is not performed. Instead, 
there is a fully connected layer. The fully connected layer 
produces an output to determine whether an input image of 
size 64x64x3 is real or fake. During training, it attempts to 
produce high output values for real images and low output 
values for generated images as much as possible.

2.2. ResNet18

ResNet (He et al. 2015) is a neural network model 
introduced to facilitate the training of deep networks and 
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ResNet18 comprises convolutional layers, batch normaliza-
tion, and ReLU activation functions (Liu 2020), Residual 
connections involve adding the output of the previous layer 
to the next layer. This technique mitigates the vanishing gra-
dient problem and allows the training of very deep networks 
possible.

ResNet18 and other ResNet architectures are applied in 
many areas such as image processing, object recognition, 
face recognition and medical image analysis. In particular, 
TL techniques and pre-trained networks such as ResNet18 
are used to achieve high success rates in various tasks.

The reasons for choosing the ResNet18 model in this project 
are based on various factors. First, the large dataset size 
supports the use of a medium-scale model such as ResNet18. 
While this model can provide sufficient performance on a 
data set of 160,000 samples, it can optimize training times 
and memory usage by having a lighter structure than deeper 
networks. Moreover, thanks to its ability to capture general 
data patterns, it can be used effectively in various scenarios 
of the project (e.g. combinations of real and synthetic data). 
As a result, the ResNet18 model was evaluated as a suitable 
choice to achieve the balance of scale and performance 
required by working with large data sets.

In the study, all layers of the pre-trained model except the 
last layer are frozen and will not be updated during train-
ing. Only the last Full Connection layer of the model was 
changed and the output was arranged to be two classes 
(positive or negative). The parameters (weights and bias) of 
the last added Full Connectivity layer are set to be open to 
training. Figure 2 shows the ResNet18 architecture used in 
the study.

2.3. Dataset and Summary of Work

Firstly, the training dataset was downloaded from https://
www.kaggle.com/datasets/paultimothymooney/breast-his-
topathology-images. Janowczyk et al. 2016, Cruz-Roa et al. 
2014). Patches of IDC, the most prevalent subtype of breast 
cancer, are seen in the dataset. Of all breast cancers, invasive 
ductal carcinoma (IDC) is the most prevalent subtype. Pa-
thologists normally concentrate on areas with IDC when 
determining the aggressiveness levels of each assembly sam-
ple. Thus, locating the precise IDC zones across the entire 
assembly slide is a typical preprocessing step for automatic 
aggressiveness rating. There are 156,000 patches in all, con-
sisting of 78,000 IDC negative and 78,000 IDC positive 
patches. The pictures have three channels and a 50x50 di-
mension. Data that is IDC negative is labeled 0, whereas 
data that is IDC positive is labeled 1.

increase performance in the field of visual processing. The 
main purpose of ResNet is to reduce training difficulties 
that may occur by making the network deeper. 

ResNet uses the concept of residual learning. In this 
approach, the network tries to learn the difference between 
the input data and the output, instead of just predicting the 
outputs of the layers. The basic structural unit of ResNet 
is the Residual Block. This block is slightly different 
from a traditional neural network layer. A Residual Block 
consists of convolution, activation, normalization layers 
and Residual Connection (Shortcut). Residual connections, 
which ease the training of deep neural networks, enhance 
their performance, and enable deeper networks.

ResNet is named according to the number of layers used. 
In this study, the ResNet18 model with 18 layers was used. 
ResNet18, a pre-trained TL model, is used to perform 
binary classification in this study.

Block Operation Activation 
Function Output Shape

Model 1 ↓

6.

Raw RGB images 5
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x32x32
515x32x32
516x32x32
512x32x32
512x32x32
512x16x16

7.

Raw RGB images 6
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x16x16
515x16x16
516x16x16
512x16x16
512x16x16

512x8x8

8.

Raw RGB images 7
Concat/

MiniBatchStd
Conv 3x3
Conv 3x3
AvgPool

-
-
-

LReLU
LReLU

-

3x8x8
515x8x8
516x8x8
512x8x8
512x8x8
512x4x4

9.

Raw RGB images 8
Concat/

MiniBatchStd
Conv 3x3
Conv 3x4

Fully Connected

-
-
-

LReLU
LReLU
Linear

3x4x4
515x4x4
516x4x4
512x4x4
512x1x1

1x1x1

Table 2. Cont.
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The dataset was divided into two parts for synthetic data 
generation (40,000 x 2) and classification (38,000 x 2). 
The reason for this is to ensure that the test data consists 
of previously unseen data during the training phase when 
performing classification.

The study consists of two parts.

•	 Firstly, synthetic data generation was performed using 
MSG-GAN with 80,000 images. As a result of this 
study, 38,000 synthetic IDC negative and 38,000 
synthetic IDC positive data were generated.

•	 Secondly, four different classifications were performed 
using ResNet18, which is one of the TL models. 

2.4. Environmental Variables Used

All models used in this study were compiled with GPU/
CPU support. All codes are implemented with the PyTorch 
2.0 framework, an open-source deep neural network library 
written in Python.

3. Results and Discussion
A certain number of datasets were divided into two parts, 
one used to generate breast cancer negative and positive 
labeled images using MSG-GAN. The generated images 
and the unused portion of the real data were used as training 
and test data, and four different classification processes were 
performed using ResNet18. The model was evaluated based 
on the results obtained.

3.1. Synthetic Data Generation with MSG-GAN

As explained in section 2.1.1 and section 2.1.2, a 5-block 
generator and discriminator architecture was used with 
MSG-GAN. In the study, WGAN-GP (Gulrajani et al. 
2017) was determined as the loss function for both the 
generator and discriminator models. As a result, 38,000 
synthetic IDC- and 38,000 synthetic IDC+ data of size 
64x64x3 were produced by using 40,000 IDC+ and 40,000 
IDC- data from the real data set. The hyperparameters used 
in each of the classifications are as follows: Batch size is 16, 
learning rate is 0.0001, and optimizer is RMSprop (Graves 
2013).

Figure 3 shows examples of synthetic IDC+ data produced 
using MSG-GAN, and Figure 4 shows examples of 
synthetic IDC- data produced using MSG-GAN.

38,000 synthetic IDC+ and 38,000 synthetic IDC- data 
produced using MSG-GAN were used in the next stage of 
the study, namely classification.Figure 2. ResNet18 architecture.
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same model was used in each subsection. The subsections 
are as follows:

•	 Training and classification of real data: 70% (53,200 
patches) of the real data was used as training and 30% 
(22,800 patches) as testing. (Even though the data set 
was divided into training and test data in the ratios of 
80:20, 60:40, 50:50, the result did not change. For this 
reason, the division is shown as 70:30.)

•	 Training and classification of synthetic data: 70% (53,200 
patches) of the synthetic data was used as training and 
30% (22,800 patches) as testing. (Even though the data 
set was divided into training and test data in the ratios 
of 80:20, 60:40, 50:50, the result did not change. For this 
reason, the division is shown as 70:30.)

•	 Training with real data and classification of synthetic 
data: All real data (76,000 patches) was used as training 
and all synthetic data (76,000 patches) was used as test 
data.

•	 Training with synthetic data and classification of real 
data: All synthetic data (76,000 patches) was used as 
training data and all real data (76,000 patches) was used 
as test data.

The purpose of the four different classifications is to establish 
a relationship between the classification results, examine the 
ability of synthetic data to reflect real data, and determine 
whether synthetic data behaves like real data.

A DL model like ResNet18 generally expects an input size 
of 224x224x3. Therefore, in the study, real and synthetic 
data were resized to 224x224x3 dimensions before the 
classification process. The ResNet18 model architecture 
described in Section 2.2 was implemented.

CrossEntropyLoss (LeCun et al. 1998) was used as the 
loss function. The hyperparameters used in each of the 
classifications are as follows: Batch size is 32, learning rate is 
0.001, and optimizer is Adam (Kingma and Ba, 2015).

Training lasted for 150 epochs for each classification. Loss 
was calculated for each batch, gradients were propagated 
backward, and model parameters were updated using the 
optimizer.

3.3. Evaluation of The Classification Results

To evaluate the system’s performance, accuracy, precision, 
recall, and F1 score metrics were used. Table 3 shows 
the metrics obtained from four different classifications 
conducted in the study.

3.2. Classification of Real and Synthetic Data with 
ResNet18

In this stage, classification was performed using the unused 
76,000 portion of the real dataset and the generated 76,000 
synthetic data with the pre-trained ResNet18 model.

The purpose of this section was to determine how similar 
synthetic data was generated to the real data and to classify 
images. This section was divided into four sub-sections. The 

Figure 4. Synthetic IDC- data examples.

Figure 3. Synthetic IDC+ data examples.  
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capacity is sufficient to learn the distribution of the data. 
These high rates indicate that synthetic data can be easily 
learned by the model. Figure 7 shows the ROC curve of the 
classification and Table 6 shows the confusion matrix of the 
classification.

Firstly, achieving high accuracy, precision, recall, and F1 score 
values when using real data as both training and test data 
(Real/Real) for classification indicates that the pre-trained 
ResNet18 model can be considered as a baseline model for 
this study. These results reflect the model’s ability to classify 
real-world data accurately. Figure 5 shows the ROC curve 
of the classification and Table 4 shows the confusion matrix 
of the classification.

Table 4. Confusion matrix (Percentage).

Actual
IDC+ IDC-

Predicted
IDC+ 84.1 15.9
IDC- 15.8 84.2

The lower accuracy, precision, recall, and F1 score values 
obtained when using real data for training and synthetic 
data for testing (Real/Synthetic) compared to Real/Real 
results can be attributed to the fact that the distribution 
conformity in synthetic data does not perfectly match that 
of real data, leading to out of distribution data samples in 
the generated data. These data samples decrease the accuracy 
rate of the respective classification. However, the similarity 
between the metric values obtained from Real/Real and 
Real/Synthetic classifications indicates that synthetic data 
closely resemble real data. Figure 6 shows the ROC curve 
of the classification and Table 5 shows the confusion matrix 
of the classification.

Table 5. Confusion matrix (Percentage).

Actual
IDC+ IDC-

Predicted
IDC+ 82.5 17.5
IDC- 21.2 78.8

Achieving nearly 100% accuracy, precision, recall, and F1 
score values when using synthetic data as both training and 
test data (Synthetic/Synthetic) suggests that the model’s 

Table 3. Metrics obtained as a result of classification of real and synthetic data.

Train/Test Data Accuracy Precision Recall F1 Score
Real/Real 0.84 0.84 0.84 0.84
Synthetic /Synthetic 0.99 0.98 0.98 0.98
Real / Synthetic 0.81 0.82 0.78 0.78
Synthetic / Real 0.76 0.77 0.76 0.76

Figure 5. ROC curve.

Figure 6. ROC curve.
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Table 7. Confusion matrix (Percentage).

Actual
IDC+ IDC-

Predicted
IDC+ 72.6 22.4
IDC- 23.4 76.6

Figure 8. ROC curve.

Figure 8 shows the ROC curve of the classification and 
Table 7 shows the confusion matrix of the classification.

The similar metric values obtained from Synthetic/Real 
and Real/Synthetic classifications using the ResNet18 
model highlight the similarity between real and synthetic 
data. Furthermore, achieving high results using a dataset 
containing out of distribution data demonstrates the success 
of the model.

The MSG-GAN model used in the study was successful 
in the production of synthetic data and high accuracy rates 
were achieved in the classification of these data.

In this study, unlike other studies in the literature, four 
different classification results that were expected to be 
related and close to each other were found. In this way, it 
was tried to determine whether synthetic data could be used 
instead of real data.

In summary, the results of the classification in four different 
scenarios were examined to see whether the synthetic data 
reflected the real world data, and the classification results 
were found to be related and close to each other. In this 
case, it has been determined that high quality and similar to 
reality synthetic data is produced.

Table 6. Confusion matrix (Percentage).

Actual
IDC+ IDC-

Predicted
IDC+ 98.5 1.5
IDC- 1.6 98.4

Figure 7. ROC curve.

The lower metric results obtained from Real/Real classifi-
cations compared to Synthetic/Synthetic classifications in 
both cases of ResNet18 classification can be explained as 
follows: The real dataset contains out of distribution exam-
ples within itself, which negatively affect synthetic data gen-
eration and classification results. Upon examination of the 
dataset, many out of distribution data points were found.

The lower accuracy, precision, recall, and F1 score values 
obtained when using synthetic data for training and real 
data for testing (Synthetic/Real) compared to Real/Real 
classifications by 8% can be interpreted as follows:

•	 As mentioned earlier, the presence of out of distribution 
examples within the real dataset and the use of real data 
as test data affect the classification results. The model 
could not find correlation for out of distribution data.

•	 The lesser diversity of synthetic data compared to real 
data might imply that synthetic data have less diversity 
than real data (since the area learned from the real data 
distribution during synthetic data generation is small 
compared to the total distribution of real data, the diver-
sity within synthetic data is low). When synthetic data is 
tested with real data, low metric values are obtained due 
to the low diversity of the training data. 
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metrics to further measure the similarity of synthetic data 
to real data.
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